{"title":"增强可见光活性的可逆光致变色光催化剂Bi2O3/TiO2/Al2O3在废水中UDMH降解中的应用","authors":"Feng Zhou, Xianghong Ren","doi":"10.1080/10934529.2019.1682883","DOIUrl":null,"url":null,"abstract":"Abstract 1,1-Dimethylhydrazine (UDMH) and its by-products were considered carcinogenic toxins and represent a serious health hazard to the population once present in water under natural conditions without treatment. The conventional degradation method suffers from incomplete removal of intermediate products (especially N-nitrosodimethylamine (NDMA)), the powdery catalysis being difficult to recover and results in high energy consumption. In this study, a series of Bi2O3/TiO2/Al2O3 (BTA) photocatalysts have been successfully synthesized by a simple dry mixing method with powder material followed by their immobilization. It was evaluated by the photocatalytic degradation of UDMH present in wastewater, which can be recovered by rapid filtration and utilizes only solar energy. The catalyst exhibited markedly enhanced photocatalytic activity for the degradation of UDMH wastewater compared with conventional TiO2/Al2O3 (TA) catalysts under UV, visible and solar irradiation. Besides, the intermediate NDMA was gradually completely degraded. The photocatalysts were extensively characterized using scanning electron microscopy, energy dispersive spectrometry, specific surface area (BET), X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible diffuse reflectance spectroscopy and photo-electrochemical I–t curves evaluation. The results revealed that all the BTA composites exhibited high stability and stronger absorbance in visible light. In addition, the BTA exhibited a reversible photochromic property that can effectively expand the range of light absorption and enhance the photocatalytic activity. The reversible photochromic properties of BTA explained in the proposed mechanism model are expected to be useful for detecting and sensing UDMH or other organic contaminants.","PeriodicalId":15733,"journal":{"name":"Journal of Environmental Science and Health, Part A","volume":"99 1","pages":"239 - 255"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Reversible photochromic photocatalyst Bi2O3/TiO2/Al2O3 with enhanced visible photoactivity: application toward UDMH degradation in wastewater\",\"authors\":\"Feng Zhou, Xianghong Ren\",\"doi\":\"10.1080/10934529.2019.1682883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract 1,1-Dimethylhydrazine (UDMH) and its by-products were considered carcinogenic toxins and represent a serious health hazard to the population once present in water under natural conditions without treatment. The conventional degradation method suffers from incomplete removal of intermediate products (especially N-nitrosodimethylamine (NDMA)), the powdery catalysis being difficult to recover and results in high energy consumption. In this study, a series of Bi2O3/TiO2/Al2O3 (BTA) photocatalysts have been successfully synthesized by a simple dry mixing method with powder material followed by their immobilization. It was evaluated by the photocatalytic degradation of UDMH present in wastewater, which can be recovered by rapid filtration and utilizes only solar energy. The catalyst exhibited markedly enhanced photocatalytic activity for the degradation of UDMH wastewater compared with conventional TiO2/Al2O3 (TA) catalysts under UV, visible and solar irradiation. Besides, the intermediate NDMA was gradually completely degraded. The photocatalysts were extensively characterized using scanning electron microscopy, energy dispersive spectrometry, specific surface area (BET), X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible diffuse reflectance spectroscopy and photo-electrochemical I–t curves evaluation. The results revealed that all the BTA composites exhibited high stability and stronger absorbance in visible light. In addition, the BTA exhibited a reversible photochromic property that can effectively expand the range of light absorption and enhance the photocatalytic activity. The reversible photochromic properties of BTA explained in the proposed mechanism model are expected to be useful for detecting and sensing UDMH or other organic contaminants.\",\"PeriodicalId\":15733,\"journal\":{\"name\":\"Journal of Environmental Science and Health, Part A\",\"volume\":\"99 1\",\"pages\":\"239 - 255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health, Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2019.1682883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health, Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10934529.2019.1682883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reversible photochromic photocatalyst Bi2O3/TiO2/Al2O3 with enhanced visible photoactivity: application toward UDMH degradation in wastewater
Abstract 1,1-Dimethylhydrazine (UDMH) and its by-products were considered carcinogenic toxins and represent a serious health hazard to the population once present in water under natural conditions without treatment. The conventional degradation method suffers from incomplete removal of intermediate products (especially N-nitrosodimethylamine (NDMA)), the powdery catalysis being difficult to recover and results in high energy consumption. In this study, a series of Bi2O3/TiO2/Al2O3 (BTA) photocatalysts have been successfully synthesized by a simple dry mixing method with powder material followed by their immobilization. It was evaluated by the photocatalytic degradation of UDMH present in wastewater, which can be recovered by rapid filtration and utilizes only solar energy. The catalyst exhibited markedly enhanced photocatalytic activity for the degradation of UDMH wastewater compared with conventional TiO2/Al2O3 (TA) catalysts under UV, visible and solar irradiation. Besides, the intermediate NDMA was gradually completely degraded. The photocatalysts were extensively characterized using scanning electron microscopy, energy dispersive spectrometry, specific surface area (BET), X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible diffuse reflectance spectroscopy and photo-electrochemical I–t curves evaluation. The results revealed that all the BTA composites exhibited high stability and stronger absorbance in visible light. In addition, the BTA exhibited a reversible photochromic property that can effectively expand the range of light absorption and enhance the photocatalytic activity. The reversible photochromic properties of BTA explained in the proposed mechanism model are expected to be useful for detecting and sensing UDMH or other organic contaminants.