有能力位置路由的非鲁棒强背包切割及相关问题

IF 0.7 4区 管理学 Q3 Engineering Military Operations Research Pub Date : 2023-06-06 DOI:10.1287/opre.2023.2458
P. Liguori, A. Mahjoub, G. Marquès, R. Sadykov, Eduardo Uchoa
{"title":"有能力位置路由的非鲁棒强背包切割及相关问题","authors":"P. Liguori, A. Mahjoub, G. Marquès, R. Sadykov, Eduardo Uchoa","doi":"10.1287/opre.2023.2458","DOIUrl":null,"url":null,"abstract":"“Nonrobust Strong Knapsack Cuts for Capacitated Location Routing and Related Problems,” by Liguori et al., presents a novel BCP algorithm for the CLRP and for other problems that share a nested knapsack structure. It outperforms existing exact algorithms in the literature, making it a powerful tool for solving instances with a large number of depot locations. A key methodological contribution is the introduction of RLKCs, a family of nonrobust cuts derived from the “outer” knapsack constraints. These cuts are strong in the sense that they contain all facets of the master knapsack polytope, dominating the cover cuts by Dabia et al. (2019) . By exploring their monotonicity and superadditivity properties, it is possible to adapt the labeling algorithm for handling RLKCs efficiently. The overall positive impact of RLKCs on the BCP performance varies depending on the problem and instance characteristics, but they have proven particularly effective for CLRP instances with tight depot capacities, making the final BCP algorithm more reliable.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"19 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonrobust Strong Knapsack Cuts for Capacitated Location Routing and Related Problems\",\"authors\":\"P. Liguori, A. Mahjoub, G. Marquès, R. Sadykov, Eduardo Uchoa\",\"doi\":\"10.1287/opre.2023.2458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"“Nonrobust Strong Knapsack Cuts for Capacitated Location Routing and Related Problems,” by Liguori et al., presents a novel BCP algorithm for the CLRP and for other problems that share a nested knapsack structure. It outperforms existing exact algorithms in the literature, making it a powerful tool for solving instances with a large number of depot locations. A key methodological contribution is the introduction of RLKCs, a family of nonrobust cuts derived from the “outer” knapsack constraints. These cuts are strong in the sense that they contain all facets of the master knapsack polytope, dominating the cover cuts by Dabia et al. (2019) . By exploring their monotonicity and superadditivity properties, it is possible to adapt the labeling algorithm for handling RLKCs efficiently. The overall positive impact of RLKCs on the BCP performance varies depending on the problem and instance characteristics, but they have proven particularly effective for CLRP instances with tight depot capacities, making the final BCP algorithm more reliable.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2023.2458\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2023.2458","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

Liguori等人的“有能力位置路由和相关问题的非鲁棒强背包切割”为CLRP和其他共享嵌套背包结构的问题提供了一种新的BCP算法。它优于文献中现有的精确算法,使其成为解决具有大量仓库位置的实例的强大工具。一个关键的方法贡献是引入了RLKCs,这是一组来自“外部”背包约束的非鲁棒切割。这些切口在某种意义上很强,因为它们包含了主背包多面体的所有方面,在Dabia等人(2019)的封面切口中占主导地位。通过研究RLKCs的单调性和超可加性,可以使标记算法更有效地处理RLKCs。RLKCs对BCP性能的总体积极影响取决于问题和实例特征,但它们已被证明对仓库容量紧张的CLRP实例特别有效,使最终的BCP算法更加可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonrobust Strong Knapsack Cuts for Capacitated Location Routing and Related Problems
“Nonrobust Strong Knapsack Cuts for Capacitated Location Routing and Related Problems,” by Liguori et al., presents a novel BCP algorithm for the CLRP and for other problems that share a nested knapsack structure. It outperforms existing exact algorithms in the literature, making it a powerful tool for solving instances with a large number of depot locations. A key methodological contribution is the introduction of RLKCs, a family of nonrobust cuts derived from the “outer” knapsack constraints. These cuts are strong in the sense that they contain all facets of the master knapsack polytope, dominating the cover cuts by Dabia et al. (2019) . By exploring their monotonicity and superadditivity properties, it is possible to adapt the labeling algorithm for handling RLKCs efficiently. The overall positive impact of RLKCs on the BCP performance varies depending on the problem and instance characteristics, but they have proven particularly effective for CLRP instances with tight depot capacities, making the final BCP algorithm more reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Military Operations Research
Military Operations Research 管理科学-运筹学与管理科学
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.
期刊最新文献
Optimal Routing Under Demand Surges: The Value of Future Arrival Rates Demand Estimation Under Uncertain Consideration Sets Optimal Routing to Parallel Servers in Heavy Traffic The When and How of Delegated Search A Data-Driven Approach to Beating SAA Out of Sample
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1