高光谱解混的部分字典重复约束稀疏编码

Naveed Akhtar, F. Shafait, A. Mian
{"title":"高光谱解混的部分字典重复约束稀疏编码","authors":"Naveed Akhtar, F. Shafait, A. Mian","doi":"10.1109/WACV.2014.6836001","DOIUrl":null,"url":null,"abstract":"Hyperspectral images obtained from remote sensing platforms have limited spatial resolution. Thus, each spectra measured at a pixel is usually a mixture of many pure spectral signatures (endmembers) corresponding to different materials on the ground. Hyperspectral unmixing aims at separating these mixed spectra into its constituent end-members. We formulate hyperspectral unmixing as a constrained sparse coding (CSC) problem where unmixing is performed with the help of a library of pure spectral signatures under positivity and summation constraints. We propose two different methods that perform CSC repeatedly over the hyperspectral data. However, the first method, Repeated-CSC (RCSC), systematically neglects a few spectral bands of the data each time it performs the sparse coding. Whereas the second method, Repeated Spectral Derivative (RSD), takes the spectral derivative of the data before the sparse coding stage. The spectral derivative is taken such that it is not operated on a few selected bands. Experiments on simulated and real hyperspectral data and comparison with existing state of the art show that the proposed methods achieve significantly higher accuracy. Our results demonstrate the overall robustness of RCSC to noise and better performance of RSD at high signal to noise ratio.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Repeated constrained sparse coding with partial dictionaries for hyperspectral unmixing\",\"authors\":\"Naveed Akhtar, F. Shafait, A. Mian\",\"doi\":\"10.1109/WACV.2014.6836001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral images obtained from remote sensing platforms have limited spatial resolution. Thus, each spectra measured at a pixel is usually a mixture of many pure spectral signatures (endmembers) corresponding to different materials on the ground. Hyperspectral unmixing aims at separating these mixed spectra into its constituent end-members. We formulate hyperspectral unmixing as a constrained sparse coding (CSC) problem where unmixing is performed with the help of a library of pure spectral signatures under positivity and summation constraints. We propose two different methods that perform CSC repeatedly over the hyperspectral data. However, the first method, Repeated-CSC (RCSC), systematically neglects a few spectral bands of the data each time it performs the sparse coding. Whereas the second method, Repeated Spectral Derivative (RSD), takes the spectral derivative of the data before the sparse coding stage. The spectral derivative is taken such that it is not operated on a few selected bands. Experiments on simulated and real hyperspectral data and comparison with existing state of the art show that the proposed methods achieve significantly higher accuracy. Our results demonstrate the overall robustness of RCSC to noise and better performance of RSD at high signal to noise ratio.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6836001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

从遥感平台获得的高光谱图像具有有限的空间分辨率。因此,在一个像素处测量的每个光谱通常是许多纯光谱特征(端元)的混合物,对应于地面上不同的材料。高光谱分解的目的是将这些混合光谱分离成其组成端元。我们将高光谱解调表述为一个约束稀疏编码(CSC)问题,其中解调是借助纯光谱签名库在正约束和求和约束下进行的。我们提出了两种不同的方法对高光谱数据重复执行CSC。然而,第一种方法,即repeat - csc (RCSC),在每次进行稀疏编码时,系统地忽略了数据的几个频谱带。而第二种方法,即重复谱导数(RSD),在稀疏编码阶段之前对数据进行谱导数。光谱导数是这样取的,它不是在几个选定的波段上操作。在模拟和真实高光谱数据上的实验以及与现有技术水平的比较表明,所提出的方法具有较高的精度。我们的研究结果证明了RCSC对噪声的整体鲁棒性,并且在高信噪比下RSD具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Repeated constrained sparse coding with partial dictionaries for hyperspectral unmixing
Hyperspectral images obtained from remote sensing platforms have limited spatial resolution. Thus, each spectra measured at a pixel is usually a mixture of many pure spectral signatures (endmembers) corresponding to different materials on the ground. Hyperspectral unmixing aims at separating these mixed spectra into its constituent end-members. We formulate hyperspectral unmixing as a constrained sparse coding (CSC) problem where unmixing is performed with the help of a library of pure spectral signatures under positivity and summation constraints. We propose two different methods that perform CSC repeatedly over the hyperspectral data. However, the first method, Repeated-CSC (RCSC), systematically neglects a few spectral bands of the data each time it performs the sparse coding. Whereas the second method, Repeated Spectral Derivative (RSD), takes the spectral derivative of the data before the sparse coding stage. The spectral derivative is taken such that it is not operated on a few selected bands. Experiments on simulated and real hyperspectral data and comparison with existing state of the art show that the proposed methods achieve significantly higher accuracy. Our results demonstrate the overall robustness of RCSC to noise and better performance of RSD at high signal to noise ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images. PathLDM: Text conditioned Latent Diffusion Model for Histopathology. Domain Generalization with Correlated Style Uncertainty. Semantic-aware Video Representation for Few-shot Action Recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1