基于边缘卷积点网的大规模点云语义分割

J. Contreras, Joachim Denzler
{"title":"基于边缘卷积点网的大规模点云语义分割","authors":"J. Contreras, Joachim Denzler","doi":"10.1109/IGARSS.2019.8899303","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a deep learning-based framework which can manage large-scale point clouds of outdoor scenes with high spatial resolution. For large and high-resolution outdoor scenes, point-wise classification approaches are often an intractable problem. Analogous to Object-Based Image Analysis (OBIA), our approach segments the scene by grouping similar points together to generate meaningful objects. Later, our net classifies segments instead of individual points using an architecture inspired by PointNet, which applies Edge convolutions. This approach is trained using both visual and geometrical information. Experiments show the potential of this task even for small training sets. Furthermore, we can show competitive performance on a Large-scale Point Cloud Classification Benchmark.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"34 1","pages":"5236-5239"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds\",\"authors\":\"J. Contreras, Joachim Denzler\",\"doi\":\"10.1109/IGARSS.2019.8899303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a deep learning-based framework which can manage large-scale point clouds of outdoor scenes with high spatial resolution. For large and high-resolution outdoor scenes, point-wise classification approaches are often an intractable problem. Analogous to Object-Based Image Analysis (OBIA), our approach segments the scene by grouping similar points together to generate meaningful objects. Later, our net classifies segments instead of individual points using an architecture inspired by PointNet, which applies Edge convolutions. This approach is trained using both visual and geometrical information. Experiments show the potential of this task even for small training sets. Furthermore, we can show competitive performance on a Large-scale Point Cloud Classification Benchmark.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"34 1\",\"pages\":\"5236-5239\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8899303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在本文中,我们提出了一个基于深度学习的框架,可以管理高空间分辨率的户外场景的大规模点云。对于大型高分辨率户外场景,逐点分类方法往往是一个棘手的问题。与基于对象的图像分析(OBIA)类似,我们的方法通过将相似的点分组在一起来生成有意义的对象来分割场景。后来,我们的网络使用PointNet启发的架构对片段进行分类,而不是单个点,该架构应用边缘卷积。该方法使用视觉和几何信息进行训练。实验表明,即使对于小的训练集,这个任务也是有潜力的。此外,我们可以在大规模点云分类基准上展示具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds
In this paper, we propose a deep learning-based framework which can manage large-scale point clouds of outdoor scenes with high spatial resolution. For large and high-resolution outdoor scenes, point-wise classification approaches are often an intractable problem. Analogous to Object-Based Image Analysis (OBIA), our approach segments the scene by grouping similar points together to generate meaningful objects. Later, our net classifies segments instead of individual points using an architecture inspired by PointNet, which applies Edge convolutions. This approach is trained using both visual and geometrical information. Experiments show the potential of this task even for small training sets. Furthermore, we can show competitive performance on a Large-scale Point Cloud Classification Benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1