非棱形截面轴向受压柱的非线性屈曲分析

A. Dharma, B. Suryoatmono
{"title":"非棱形截面轴向受压柱的非线性屈曲分析","authors":"A. Dharma, B. Suryoatmono","doi":"10.22146/jcef.47607","DOIUrl":null,"url":null,"abstract":"In order to use material efficiently, non-prismatic column sections are frequently employed. Tapered-web column cross-sections are commonly used, and design guides of such sections are available. In this study, various web-and-flange-tapered column sections were analysed numerically using finite element method to obtain each buckling load assuming the material as elastic-perfectly plastic material. For each non-prismatic column, the analysis was also performed assuming the column is prismatic using average cross-section with the same length and boundary conditions. Buckling load of the prismatic columns were obtained using equation provided by AISC 360-16. This study proposes a multiplier that can be applied to the buckling load of a prismatic column with an average cross-section to acquire the buckling load of the corresponding non-prismatic column. The multiplier proposed in this study depends on three variables, namely the depth tapered ratio, width tapered ratio, and slenderness ratio of the prismatic section. The equation that uses those three variables to obtain the multiplier is obtained using regression of the finite element results with a coefficient of determination of 0.96.","PeriodicalId":31890,"journal":{"name":"Journal of the Civil Engineering Forum","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-Linear Buckling Analysis of Axially Loaded Column with Non-Prismatic I-Section\",\"authors\":\"A. Dharma, B. Suryoatmono\",\"doi\":\"10.22146/jcef.47607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to use material efficiently, non-prismatic column sections are frequently employed. Tapered-web column cross-sections are commonly used, and design guides of such sections are available. In this study, various web-and-flange-tapered column sections were analysed numerically using finite element method to obtain each buckling load assuming the material as elastic-perfectly plastic material. For each non-prismatic column, the analysis was also performed assuming the column is prismatic using average cross-section with the same length and boundary conditions. Buckling load of the prismatic columns were obtained using equation provided by AISC 360-16. This study proposes a multiplier that can be applied to the buckling load of a prismatic column with an average cross-section to acquire the buckling load of the corresponding non-prismatic column. The multiplier proposed in this study depends on three variables, namely the depth tapered ratio, width tapered ratio, and slenderness ratio of the prismatic section. The equation that uses those three variables to obtain the multiplier is obtained using regression of the finite element results with a coefficient of determination of 0.96.\",\"PeriodicalId\":31890,\"journal\":{\"name\":\"Journal of the Civil Engineering Forum\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Civil Engineering Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/jcef.47607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Civil Engineering Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jcef.47607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了有效地利用材料,非棱柱截面经常被采用。锥形腹板柱截面是常用的截面,有这种截面的设计指南。在本研究中,采用有限元方法对各种腹板和法兰锥形柱截面进行了数值分析,并假设材料为完全弹塑性材料,得到了各截面的屈曲载荷。对于每个非棱柱柱,分析也执行假设柱是棱柱,使用具有相同长度和边界条件的平均截面。采用AISC 360-16提供的公式计算柱形柱的屈曲载荷。本研究提出了一种乘法器,可以应用于具有平均截面的棱柱的屈曲载荷,以获得相应的非棱柱的屈曲载荷。本文提出的乘数取决于三个变量,即棱柱截面的深度锥度比、宽度锥度比和长细比。利用这三个变量求得乘数的方程,对有限元结果进行回归,决定系数为0.96。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-Linear Buckling Analysis of Axially Loaded Column with Non-Prismatic I-Section
In order to use material efficiently, non-prismatic column sections are frequently employed. Tapered-web column cross-sections are commonly used, and design guides of such sections are available. In this study, various web-and-flange-tapered column sections were analysed numerically using finite element method to obtain each buckling load assuming the material as elastic-perfectly plastic material. For each non-prismatic column, the analysis was also performed assuming the column is prismatic using average cross-section with the same length and boundary conditions. Buckling load of the prismatic columns were obtained using equation provided by AISC 360-16. This study proposes a multiplier that can be applied to the buckling load of a prismatic column with an average cross-section to acquire the buckling load of the corresponding non-prismatic column. The multiplier proposed in this study depends on three variables, namely the depth tapered ratio, width tapered ratio, and slenderness ratio of the prismatic section. The equation that uses those three variables to obtain the multiplier is obtained using regression of the finite element results with a coefficient of determination of 0.96.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
15 weeks
期刊最新文献
Airline Choice Decision for Jakarta-Denpasar Route During the Covid-19 Pandemic Comparative Seismic Analysis of G+20 RC Framed Structure Building for with and without Shear Walls Proposal and Evaluation of Vertical Vibration Theory of Air Caster Seismic Vulnerability Assessment of Regular and Vertically Irregular Residential Buildings in Nepal Numerical Study on the Effects of Helix Diameter and Spacing on the Helical Pile Axial Bearing Capacity in Cohesionless Soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1