黑洞:受图形绘制启发的鲁棒社区检测

Sungsu Lim, Junghoon Kim, Jae-Gil Lee
{"title":"黑洞:受图形绘制启发的鲁棒社区检测","authors":"Sungsu Lim, Junghoon Kim, Jae-Gil Lee","doi":"10.1109/ICDE.2016.7498226","DOIUrl":null,"url":null,"abstract":"With regard to social network analysis, we concentrate on two widely-accepted building blocks: community detection and graph drawing. Although community detection and graph drawing have been studied separately, they have a great commonality, which means that it is possible to advance one field using the techniques of the other. In this paper, we propose a novel community detection algorithm for undirected graphs, called BlackHole, by importing a geometric embedding technique from graph drawing. Our proposed algorithm transforms the vertices of a graph to a set of points on a low-dimensional space whose coordinates are determined by a variant of graph drawing algorithms, following the overall procedure of spectral clustering. The set of points are then clustered using a conventional clustering algorithm to form communities. Our primary contribution is to prove that a common idea in graph drawing, which is characterized by consideration of repulsive forces in addition to attractive forces, improves the clusterability of an embedding. As a result, our algorithm has the advantages of being robust especially when the community structure is not easily detectable. Through extensive experiments, we have shown that BlackHole achieves the accuracy higher than or comparable to the state-of-the-art algorithms.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"43 1","pages":"25-36"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"BlackHole: Robust community detection inspired by graph drawing\",\"authors\":\"Sungsu Lim, Junghoon Kim, Jae-Gil Lee\",\"doi\":\"10.1109/ICDE.2016.7498226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With regard to social network analysis, we concentrate on two widely-accepted building blocks: community detection and graph drawing. Although community detection and graph drawing have been studied separately, they have a great commonality, which means that it is possible to advance one field using the techniques of the other. In this paper, we propose a novel community detection algorithm for undirected graphs, called BlackHole, by importing a geometric embedding technique from graph drawing. Our proposed algorithm transforms the vertices of a graph to a set of points on a low-dimensional space whose coordinates are determined by a variant of graph drawing algorithms, following the overall procedure of spectral clustering. The set of points are then clustered using a conventional clustering algorithm to form communities. Our primary contribution is to prove that a common idea in graph drawing, which is characterized by consideration of repulsive forces in addition to attractive forces, improves the clusterability of an embedding. As a result, our algorithm has the advantages of being robust especially when the community structure is not easily detectable. Through extensive experiments, we have shown that BlackHole achieves the accuracy higher than or comparable to the state-of-the-art algorithms.\",\"PeriodicalId\":6883,\"journal\":{\"name\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"volume\":\"43 1\",\"pages\":\"25-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2016.7498226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

关于社会网络分析,我们专注于两个被广泛接受的构建模块:社区检测和图形绘制。虽然社区检测和图形绘制是分开研究的,但它们有很大的共性,这意味着可以使用另一个领域的技术来推进一个领域。本文引入图形绘制中的几何嵌入技术,提出了一种新的无向图群体检测算法——黑洞。我们提出的算法将图的顶点转换为低维空间上的一组点,这些点的坐标由一种图形绘制算法的变体确定,遵循谱聚类的整个过程。然后使用传统的聚类算法对这些点进行聚类以形成群体。我们的主要贡献是证明了图形绘制中的一个共同思想,除了考虑引力之外,还考虑了斥力,从而提高了嵌入的聚类性。结果表明,该算法具有较强的鲁棒性,特别是在群体结构不易检测的情况下。通过大量的实验,我们已经证明黑洞达到了比最先进的算法更高或相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BlackHole: Robust community detection inspired by graph drawing
With regard to social network analysis, we concentrate on two widely-accepted building blocks: community detection and graph drawing. Although community detection and graph drawing have been studied separately, they have a great commonality, which means that it is possible to advance one field using the techniques of the other. In this paper, we propose a novel community detection algorithm for undirected graphs, called BlackHole, by importing a geometric embedding technique from graph drawing. Our proposed algorithm transforms the vertices of a graph to a set of points on a low-dimensional space whose coordinates are determined by a variant of graph drawing algorithms, following the overall procedure of spectral clustering. The set of points are then clustered using a conventional clustering algorithm to form communities. Our primary contribution is to prove that a common idea in graph drawing, which is characterized by consideration of repulsive forces in addition to attractive forces, improves the clusterability of an embedding. As a result, our algorithm has the advantages of being robust especially when the community structure is not easily detectable. Through extensive experiments, we have shown that BlackHole achieves the accuracy higher than or comparable to the state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1