基于改进遗传算法的工业机器人工艺参数优化控制

Cenglin Yao, Yongzhou Li, Mohd Dilshad Ansari, M. A. Talab, Amit Verma
{"title":"基于改进遗传算法的工业机器人工艺参数优化控制","authors":"Cenglin Yao, Yongzhou Li, Mohd Dilshad Ansari, M. A. Talab, Amit Verma","doi":"10.1515/pjbr-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract A number of suggestions are made based on the improved evolutionary algorithm and using the polishing parameter optimization of an industrial robot as an example to optimize the industrial process parameter control. By fitting a cubic B-spline curve, the trajectory curve of each joint is determined. The kinematic constraint is replaced with the control point constraint of a B-spline curve, and the time optimal time node is solved using an enhanced evolutionary algorithm. This foundation allows for the creation of the nonlinear trajectory curve that satisfies the time optimization. The research shows that based on the improved genetic algorithm (GA), the “degradation” phenomenon of the traditional GA can be avoided, and the optimal solution can be obtained faster, that is, the polishing working time of the polishing industrial robot reaches the optimal level. An enhanced GA that incorporates simulated annealing is suggested to address the mathematical model of robot deburring process parameter optimization. Population selection is accomplished by the use of metropolis sampling, which successfully addresses the issue of the GA’s simple local convergence. The process parameter optimization verification is done while a robot deburring test platform is being constructed. The test results demonstrate a considerable reduction in burr removal time per unit length and an increase in efficiency when compared with the empirical method.","PeriodicalId":90037,"journal":{"name":"Paladyn : journal of behavioral robotics","volume":"99 1","pages":"67 - 75"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimization of industrial process parameter control using improved genetic algorithm for industrial robot\",\"authors\":\"Cenglin Yao, Yongzhou Li, Mohd Dilshad Ansari, M. A. Talab, Amit Verma\",\"doi\":\"10.1515/pjbr-2022-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A number of suggestions are made based on the improved evolutionary algorithm and using the polishing parameter optimization of an industrial robot as an example to optimize the industrial process parameter control. By fitting a cubic B-spline curve, the trajectory curve of each joint is determined. The kinematic constraint is replaced with the control point constraint of a B-spline curve, and the time optimal time node is solved using an enhanced evolutionary algorithm. This foundation allows for the creation of the nonlinear trajectory curve that satisfies the time optimization. The research shows that based on the improved genetic algorithm (GA), the “degradation” phenomenon of the traditional GA can be avoided, and the optimal solution can be obtained faster, that is, the polishing working time of the polishing industrial robot reaches the optimal level. An enhanced GA that incorporates simulated annealing is suggested to address the mathematical model of robot deburring process parameter optimization. Population selection is accomplished by the use of metropolis sampling, which successfully addresses the issue of the GA’s simple local convergence. The process parameter optimization verification is done while a robot deburring test platform is being constructed. The test results demonstrate a considerable reduction in burr removal time per unit length and an increase in efficiency when compared with the empirical method.\",\"PeriodicalId\":90037,\"journal\":{\"name\":\"Paladyn : journal of behavioral robotics\",\"volume\":\"99 1\",\"pages\":\"67 - 75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paladyn : journal of behavioral robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/pjbr-2022-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paladyn : journal of behavioral robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pjbr-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

摘要基于改进的进化算法,以工业机器人抛光参数优化为例,对工业过程参数控制的优化提出了若干建议。通过拟合三次b样条曲线,确定各关节的轨迹曲线。将运动约束替换为b样条曲线的控制点约束,采用改进的进化算法求解时间最优时间节点。此基础允许创建满足时间优化的非线性轨迹曲线。研究表明,基于改进的遗传算法(GA)可以避免传统遗传算法的“退化”现象,并且可以更快地获得最优解,即抛光工业机器人的抛光工作时间达到最优水平。针对机器人去毛刺工艺参数优化的数学模型,提出了一种结合模拟退火的增强遗传算法。总体选择采用大都市抽样,成功地解决了遗传算法的简单局部收敛问题。在搭建机器人去毛刺试验平台的同时,对工艺参数进行了优化验证。试验结果表明,与经验方法相比,单位长度毛刺去除时间大大减少,效率提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of industrial process parameter control using improved genetic algorithm for industrial robot
Abstract A number of suggestions are made based on the improved evolutionary algorithm and using the polishing parameter optimization of an industrial robot as an example to optimize the industrial process parameter control. By fitting a cubic B-spline curve, the trajectory curve of each joint is determined. The kinematic constraint is replaced with the control point constraint of a B-spline curve, and the time optimal time node is solved using an enhanced evolutionary algorithm. This foundation allows for the creation of the nonlinear trajectory curve that satisfies the time optimization. The research shows that based on the improved genetic algorithm (GA), the “degradation” phenomenon of the traditional GA can be avoided, and the optimal solution can be obtained faster, that is, the polishing working time of the polishing industrial robot reaches the optimal level. An enhanced GA that incorporates simulated annealing is suggested to address the mathematical model of robot deburring process parameter optimization. Population selection is accomplished by the use of metropolis sampling, which successfully addresses the issue of the GA’s simple local convergence. The process parameter optimization verification is done while a robot deburring test platform is being constructed. The test results demonstrate a considerable reduction in burr removal time per unit length and an increase in efficiency when compared with the empirical method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robot-assisted therapy for upper limb impairments in cerebral palsy: A scoping review and suggestions for future research Discrimination against robots: Discussing the ethics of social interactions and who is harmed Power quality enhancement of solar–wind grid connected system employing genetic-based ANFIS controller Control optimization of taper interference coupling system for large piston compressor in the smart industries Ultra-low latency communication technology for Augmented Reality application in mobile periphery computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1