{"title":"V/ZnO-ZrO2的合成、表征及光催化应用","authors":"Thao Pham Thi Minh, Huong Do Thi, Hai Le Thi Hong","doi":"10.51316/jca.2022.036","DOIUrl":null,"url":null,"abstract":"In this work we report the synthesis of ZnO-ZrO2 and vanadium doped ZnO-ZrO2 (V/ZnO-ZrO2) nanocomposite materials by a sol–gel processing technique. The molar ratio between ZnO and ZrO2 is 3 : 4, the molar percentage of vanadium doped (relative to ZrO2) varies from 3% to 9%. The obtained materials were characterized by XRD, SEM, UV-Vis, BET, EDX. XRD data identified phase of the ZnO and phase of ZrO2 in all obtained samples. The average crystallite size of the samples was between 18 to 20 nm. UV-Vis spectra showed that the band gap energy decreased by the doping of Vanadium. The EDX result of ZZV347S indicated doping efficiency equal 91,29%. The photocatalytic activities of nanocompsite materials were evaluated by the photocatalytic degradation of phenol under UV light. The highest photocatalytic efficiency for phenol degradation was achieved through ZZV343S catalyst after 180 minutes.","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"102 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, characterization, and photocatalytic application of V/ZnO-ZrO2\",\"authors\":\"Thao Pham Thi Minh, Huong Do Thi, Hai Le Thi Hong\",\"doi\":\"10.51316/jca.2022.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we report the synthesis of ZnO-ZrO2 and vanadium doped ZnO-ZrO2 (V/ZnO-ZrO2) nanocomposite materials by a sol–gel processing technique. The molar ratio between ZnO and ZrO2 is 3 : 4, the molar percentage of vanadium doped (relative to ZrO2) varies from 3% to 9%. The obtained materials were characterized by XRD, SEM, UV-Vis, BET, EDX. XRD data identified phase of the ZnO and phase of ZrO2 in all obtained samples. The average crystallite size of the samples was between 18 to 20 nm. UV-Vis spectra showed that the band gap energy decreased by the doping of Vanadium. The EDX result of ZZV347S indicated doping efficiency equal 91,29%. The photocatalytic activities of nanocompsite materials were evaluated by the photocatalytic degradation of phenol under UV light. The highest photocatalytic efficiency for phenol degradation was achieved through ZZV343S catalyst after 180 minutes.\",\"PeriodicalId\":23507,\"journal\":{\"name\":\"Vietnam Journal of Catalysis and Adsorption\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Catalysis and Adsorption\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51316/jca.2022.036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51316/jca.2022.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis, characterization, and photocatalytic application of V/ZnO-ZrO2
In this work we report the synthesis of ZnO-ZrO2 and vanadium doped ZnO-ZrO2 (V/ZnO-ZrO2) nanocomposite materials by a sol–gel processing technique. The molar ratio between ZnO and ZrO2 is 3 : 4, the molar percentage of vanadium doped (relative to ZrO2) varies from 3% to 9%. The obtained materials were characterized by XRD, SEM, UV-Vis, BET, EDX. XRD data identified phase of the ZnO and phase of ZrO2 in all obtained samples. The average crystallite size of the samples was between 18 to 20 nm. UV-Vis spectra showed that the band gap energy decreased by the doping of Vanadium. The EDX result of ZZV347S indicated doping efficiency equal 91,29%. The photocatalytic activities of nanocompsite materials were evaluated by the photocatalytic degradation of phenol under UV light. The highest photocatalytic efficiency for phenol degradation was achieved through ZZV343S catalyst after 180 minutes.