{"title":"基于对接的生物活性薯蓣皂苷多靶点抗SARS-Cov-2药物鉴定","authors":"D. Panigrahi, B. Behera, S. Sahu","doi":"10.29356/jmcs.v66i3.1683","DOIUrl":null,"url":null,"abstract":"Abstract. The pandemic COVID-19, caused by the organism severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the family Coronoviridae has become a serious global healthcare crisis. The biggest demand of the present time is to develop efficacious medication for the treatment of SARS-CoV-2. In the present study, we performed the interaction of 50 flavonoids selected from the Pubchem database, with five efficacious protein targets for SARS-CoV-2: main protease (Mpro), spike glycoprotein-receptor binding domain (SGp-RBD), RNA-dependent RNA polymerase (RdRp), angiotensin converting enzyme-2 (ACE-2) and non-structural protein15 (NSP15, an endonuclease). All the work involve in the present study was accomplished by using Maestro 12.4 (Schrodinger Suite) to obtain the docking scores and ADME-T study result of selected ligands with the five effective target proteins of SARS-CoV-2. Molecular docking-based results indicated that diosmin has the most favorable docking scores -10.16, -11.52, -9.75, -11.25 and -10.25 kcal/mol for the Mpro, SGp-RBD, ACE-2, RdRp and NSP-15 protein targets and had acceptable drug suitability as a therapeutic agent against COVID-19. The structure of this compound can be further useful to medicinal chemists, pharmacologists, and clinicians for efficiently discovering or developing effective drugs to cure COVID-19.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Docking Based Identification of Bioactive Diosmin as Potential Multi-Targeted Anti SARS-Cov-2 Agent\",\"authors\":\"D. Panigrahi, B. Behera, S. Sahu\",\"doi\":\"10.29356/jmcs.v66i3.1683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The pandemic COVID-19, caused by the organism severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the family Coronoviridae has become a serious global healthcare crisis. The biggest demand of the present time is to develop efficacious medication for the treatment of SARS-CoV-2. In the present study, we performed the interaction of 50 flavonoids selected from the Pubchem database, with five efficacious protein targets for SARS-CoV-2: main protease (Mpro), spike glycoprotein-receptor binding domain (SGp-RBD), RNA-dependent RNA polymerase (RdRp), angiotensin converting enzyme-2 (ACE-2) and non-structural protein15 (NSP15, an endonuclease). All the work involve in the present study was accomplished by using Maestro 12.4 (Schrodinger Suite) to obtain the docking scores and ADME-T study result of selected ligands with the five effective target proteins of SARS-CoV-2. Molecular docking-based results indicated that diosmin has the most favorable docking scores -10.16, -11.52, -9.75, -11.25 and -10.25 kcal/mol for the Mpro, SGp-RBD, ACE-2, RdRp and NSP-15 protein targets and had acceptable drug suitability as a therapeutic agent against COVID-19. The structure of this compound can be further useful to medicinal chemists, pharmacologists, and clinicians for efficiently discovering or developing effective drugs to cure COVID-19.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.29356/jmcs.v66i3.1683\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.29356/jmcs.v66i3.1683","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Docking Based Identification of Bioactive Diosmin as Potential Multi-Targeted Anti SARS-Cov-2 Agent
Abstract. The pandemic COVID-19, caused by the organism severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the family Coronoviridae has become a serious global healthcare crisis. The biggest demand of the present time is to develop efficacious medication for the treatment of SARS-CoV-2. In the present study, we performed the interaction of 50 flavonoids selected from the Pubchem database, with five efficacious protein targets for SARS-CoV-2: main protease (Mpro), spike glycoprotein-receptor binding domain (SGp-RBD), RNA-dependent RNA polymerase (RdRp), angiotensin converting enzyme-2 (ACE-2) and non-structural protein15 (NSP15, an endonuclease). All the work involve in the present study was accomplished by using Maestro 12.4 (Schrodinger Suite) to obtain the docking scores and ADME-T study result of selected ligands with the five effective target proteins of SARS-CoV-2. Molecular docking-based results indicated that diosmin has the most favorable docking scores -10.16, -11.52, -9.75, -11.25 and -10.25 kcal/mol for the Mpro, SGp-RBD, ACE-2, RdRp and NSP-15 protein targets and had acceptable drug suitability as a therapeutic agent against COVID-19. The structure of this compound can be further useful to medicinal chemists, pharmacologists, and clinicians for efficiently discovering or developing effective drugs to cure COVID-19.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.