一种改进的遥感影像道路中心线搜索方法

Duan Juan, Liu Runsheng, Jin Fei
{"title":"一种改进的遥感影像道路中心线搜索方法","authors":"Duan Juan, Liu Runsheng, Jin Fei","doi":"10.1109/IICSPI.2018.8690497","DOIUrl":null,"url":null,"abstract":"Aiming at the sensitivity of the road centerline extraction algorithm using directional texture to the disturbance in the images, a modified method for road centerlines on highresolution remote sensing images is proposed based on the directional texture and Kalman Filter. After the initial center points of the road are obtained by directional texture matching, Kalman Filter combined with priori information and observation information of the road center points is applied to track the accurate road center points iteratively. Multiple experiments are designed to verify the reliability and robustness of the algorithm, showing that it can reduce the covering impact of vehicles, trees and shadow on road extraction in high-resolution images with relatively strong robustness and flexibility. The average position deviation is 1.9 pixels, and the average position deviation error is 1.7 pixels.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"127 1 1","pages":"192-195"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Road Centerlines Search Method from Remote Sensing Images\",\"authors\":\"Duan Juan, Liu Runsheng, Jin Fei\",\"doi\":\"10.1109/IICSPI.2018.8690497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the sensitivity of the road centerline extraction algorithm using directional texture to the disturbance in the images, a modified method for road centerlines on highresolution remote sensing images is proposed based on the directional texture and Kalman Filter. After the initial center points of the road are obtained by directional texture matching, Kalman Filter combined with priori information and observation information of the road center points is applied to track the accurate road center points iteratively. Multiple experiments are designed to verify the reliability and robustness of the algorithm, showing that it can reduce the covering impact of vehicles, trees and shadow on road extraction in high-resolution images with relatively strong robustness and flexibility. The average position deviation is 1.9 pixels, and the average position deviation error is 1.7 pixels.\",\"PeriodicalId\":6673,\"journal\":{\"name\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"volume\":\"127 1 1\",\"pages\":\"192-195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI.2018.8690497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对基于方向纹理的道路中心线提取算法对图像干扰的敏感性,提出了一种基于方向纹理和卡尔曼滤波的高分辨率遥感图像道路中心线提取改进方法。通过纹理定向匹配获得初始道路中心点后,结合先验信息和道路中心点观测信息,应用卡尔曼滤波迭代跟踪准确的道路中心点。设计了多个实验验证该算法的可靠性和鲁棒性,结果表明,该算法可以降低车辆、树木和阴影对高分辨率图像道路提取的覆盖影响,具有较强的鲁棒性和灵活性。平均位置偏差为1.9像素,平均位置偏差误差为1.7像素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Modified Road Centerlines Search Method from Remote Sensing Images
Aiming at the sensitivity of the road centerline extraction algorithm using directional texture to the disturbance in the images, a modified method for road centerlines on highresolution remote sensing images is proposed based on the directional texture and Kalman Filter. After the initial center points of the road are obtained by directional texture matching, Kalman Filter combined with priori information and observation information of the road center points is applied to track the accurate road center points iteratively. Multiple experiments are designed to verify the reliability and robustness of the algorithm, showing that it can reduce the covering impact of vehicles, trees and shadow on road extraction in high-resolution images with relatively strong robustness and flexibility. The average position deviation is 1.9 pixels, and the average position deviation error is 1.7 pixels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Functional Safety Analysis and Design of Dual-Motor Hybrid Bus Clutch System Methods of Resource Allocation with Conflict Detection Exploration and Application of Sheet Metal Technology on Pit Package Repairing Study on Standardization of Electrolytic Trace Moisture Meter in Safety Construction of CNG Refueling Station The Research and Analysis of Big Data Application on Distribution Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1