蒸汽再压缩蒸馏法制备聚合物级丙烯系统的设计与评价

M. Fontana, L. Fernandes, T. A. Souza
{"title":"蒸汽再压缩蒸馏法制备聚合物级丙烯系统的设计与评价","authors":"M. Fontana, L. Fernandes, T. A. Souza","doi":"10.5419/bjpg2019-0027","DOIUrl":null,"url":null,"abstract":"Propylene in a purity degree above 99.5% (polymer purity grade- PPG) is a first-generation basic petrochemical that represents a vital link in refining-petrochemical integration. The strict specification of the product and the need to maximize the energy efficiency of the propylene/propane distillation process poses several challenges to the optimization of both the design and operation of the plant. Using a Petro-SIM (KBC) technology, a polymer grade general model from a propylene distillation unit was developed by means of vapor recompression. The sensitivity for feeding with different propylene fractions was analyzed, reaching a value of 0.94, which is considered the minimum propylene fraction in the feed required to the tower to generate a product with polymer purity grade. Based on the data obtained in the simulation, the tower was designed and evaluated by means of vapor recompression, showing a potential alternative way to obtain propylene at polymer grade which could be cost saving in industrial processes.","PeriodicalId":9312,"journal":{"name":"Brazilian Journal of Petroleum and Gas","volume":"130 1","pages":"323-332"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DESIGN AND EVALUATION OF A SYSTEM TO OBTAIN POLYMER GRADE PROPYLENE BY MEANS OF VAPOR RECOMPRESSION DISTILLATION\",\"authors\":\"M. Fontana, L. Fernandes, T. A. Souza\",\"doi\":\"10.5419/bjpg2019-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Propylene in a purity degree above 99.5% (polymer purity grade- PPG) is a first-generation basic petrochemical that represents a vital link in refining-petrochemical integration. The strict specification of the product and the need to maximize the energy efficiency of the propylene/propane distillation process poses several challenges to the optimization of both the design and operation of the plant. Using a Petro-SIM (KBC) technology, a polymer grade general model from a propylene distillation unit was developed by means of vapor recompression. The sensitivity for feeding with different propylene fractions was analyzed, reaching a value of 0.94, which is considered the minimum propylene fraction in the feed required to the tower to generate a product with polymer purity grade. Based on the data obtained in the simulation, the tower was designed and evaluated by means of vapor recompression, showing a potential alternative way to obtain propylene at polymer grade which could be cost saving in industrial processes.\",\"PeriodicalId\":9312,\"journal\":{\"name\":\"Brazilian Journal of Petroleum and Gas\",\"volume\":\"130 1\",\"pages\":\"323-332\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Petroleum and Gas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5419/bjpg2019-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Petroleum and Gas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5419/bjpg2019-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纯度在99.5%以上(聚合物纯度等级- PPG)的丙烯是第一代基础石化产品,是炼油石化一体化的重要环节。产品的严格规格和丙烯/丙烷蒸馏过程的能源效率最大化的需要对装置的设计和操作的优化提出了几个挑战。采用Petro-SIM (KBC)技术,通过蒸汽再压缩的方法,开发了丙烯蒸馏装置的聚合物级通用模型。对不同丙烯馏分进料的灵敏度进行了分析,其值为0.94,该值被认为是塔所需进料中丙烯馏分的最小值,以产生具有聚合物纯度等级的产品。根据模拟得到的数据,采用蒸汽再压缩的方法对塔进行了设计和评价,为工业生产中节省成本的聚合物级丙烯提供了一种潜在的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DESIGN AND EVALUATION OF A SYSTEM TO OBTAIN POLYMER GRADE PROPYLENE BY MEANS OF VAPOR RECOMPRESSION DISTILLATION
Propylene in a purity degree above 99.5% (polymer purity grade- PPG) is a first-generation basic petrochemical that represents a vital link in refining-petrochemical integration. The strict specification of the product and the need to maximize the energy efficiency of the propylene/propane distillation process poses several challenges to the optimization of both the design and operation of the plant. Using a Petro-SIM (KBC) technology, a polymer grade general model from a propylene distillation unit was developed by means of vapor recompression. The sensitivity for feeding with different propylene fractions was analyzed, reaching a value of 0.94, which is considered the minimum propylene fraction in the feed required to the tower to generate a product with polymer purity grade. Based on the data obtained in the simulation, the tower was designed and evaluated by means of vapor recompression, showing a potential alternative way to obtain propylene at polymer grade which could be cost saving in industrial processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMMISCIBLE VISCOUS FINGERING MODELING OF TERTIARY POLYMER FLOODING BASED ON REAL CASE OF HEAVY OIL RESERVOIR MODEL SYNTHETIC WATER-IN-OIL EMULSIONS: EFFECT OF OIL COMPOSITION ON STABILITY AND DEMULSIFIER PERFORMANCE WELL-TO-WELL (W2W) ELECTROMAGNETIC TOMOGRAPHY MODELING ADVANCEMENT: IMPROVING PRECISION AND EFFECTIVENESS WITH REGULARIZATION SCALE INHIBITOR SQUEEZE TREATMENT: AN ADVANCED BIBLIOMETRIC ANALYSIS REACTIVE FLOW IN CARBONATE ROCKS FROM LACUSTRINE ENVIRONMENTS: THE EFFECTS OF PRESSURE AND FLUID SALINITY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1