一类非线性系统基于数据的自适应输出反馈跟踪控制

Ling Ren, Guoshan Zhang
{"title":"一类非线性系统基于数据的自适应输出反馈跟踪控制","authors":"Ling Ren, Guoshan Zhang","doi":"10.1109/DDCLS.2018.8516058","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an output feedback tracking control scheme for a class of continuous-time nonlinear systems without specific model. A radial basis function neural network (RBFNN) observer is designed to online estimate the unmeasured inner state variables only using the input and output data. Based on the designed RBFNN observer, a sliding mode controller is derived to guarantee that the system states follow the desired trajectories. Simulation results on an example show the effectiveness and tracking performance of the proposed scheme.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"421 1","pages":"246-250"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Data-Based Adaptive Output Feedback Tracking Control for a Class of Nonlinear Systems\",\"authors\":\"Ling Ren, Guoshan Zhang\",\"doi\":\"10.1109/DDCLS.2018.8516058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an output feedback tracking control scheme for a class of continuous-time nonlinear systems without specific model. A radial basis function neural network (RBFNN) observer is designed to online estimate the unmeasured inner state variables only using the input and output data. Based on the designed RBFNN observer, a sliding mode controller is derived to guarantee that the system states follow the desired trajectories. Simulation results on an example show the effectiveness and tracking performance of the proposed scheme.\",\"PeriodicalId\":6565,\"journal\":{\"name\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"421 1\",\"pages\":\"246-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2018.8516058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对一类无特定模型的连续非线性系统,提出了一种输出反馈跟踪控制方案。设计了径向基函数神经网络观测器,仅利用输入和输出数据在线估计未测量的内部状态变量。基于所设计的RBFNN观测器,推导了滑模控制器,以保证系统状态遵循期望的轨迹。仿真结果表明了该方法的有效性和跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Based Adaptive Output Feedback Tracking Control for a Class of Nonlinear Systems
In this paper, we propose an output feedback tracking control scheme for a class of continuous-time nonlinear systems without specific model. A radial basis function neural network (RBFNN) observer is designed to online estimate the unmeasured inner state variables only using the input and output data. Based on the designed RBFNN observer, a sliding mode controller is derived to guarantee that the system states follow the desired trajectories. Simulation results on an example show the effectiveness and tracking performance of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Diagnosis of High-speed Train Bogie Based on Spectrogram and Multi-channel Voting Yarn-dyed Fabric Defect Detection with YOLOV2 Based on Deep Convolution Neural Networks On the Design and Analysis of a Learning Control Algorithm for Point-to-point Tracking Tasks Iterative Learning Control for Singular System with An Arbitrary Initial State A Comparative Study of Adaptive Soft Sensors for Quality Prediction in an Industrial Refining Hydrocracking Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1