求解多维矩约束最大熵问题的一种逐方程方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2017-02-08 DOI:10.2140/camcos.2018.13.189
Wenrui Hao, J. Harlim
{"title":"求解多维矩约束最大熵问题的一种逐方程方法","authors":"Wenrui Hao, J. Harlim","doi":"10.2140/camcos.2018.13.189","DOIUrl":null,"url":null,"abstract":"An equation-by-equation (EBE) method is proposed to solve a system of nonlinear equations arising from the moment constrained maximum entropy problem of multidimensional variables. The design of the EBE method combines ideas from homotopy continuation and Newton's iterative methods. Theoretically, we establish the local convergence under appropriate conditions and show that the proposed method, geometrically, finds the solution by searching along the surface corresponding to one component of the nonlinear problem. We will demonstrate the robustness of the method on various numerical examples, including: (1) A six-moment one-dimensional entropy problem with an explicit solution that contains components of order $10^0-10^3$ in magnitude; (2) Four-moment multidimensional entropy problems with explicit solutions where the resulting systems to be solved ranging from $70-310$ equations; (3) Four- to eight-moment of a two-dimensional entropy problem, which solutions correspond to the densities of the two leading EOFs of the wind stress-driven large-scale oceanic model. In this case, we find that the EBE method is more accurate compared to the classical Newton's method, the MATLAB generic solver, and the previously developed BFGS-based method, which was also tested on this problem. (4) Four-moment constrained of up to five-dimensional entropy problems which solutions correspond to multidimensional densities of the components of the solutions of the Kuramoto-Sivashinsky equation. For the higher dimensional cases of this example, the EBE method is superior because it automatically selects a subset of the prescribed moment constraints from which the maximum entropy solution can be estimated within the desired tolerance. This selection feature is particularly important since the moment constrained maximum entropy problems do not necessarily have solutions in general.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An equation-by-equation method for solving the multidimensional moment constrained maximum entropy problem\",\"authors\":\"Wenrui Hao, J. Harlim\",\"doi\":\"10.2140/camcos.2018.13.189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An equation-by-equation (EBE) method is proposed to solve a system of nonlinear equations arising from the moment constrained maximum entropy problem of multidimensional variables. The design of the EBE method combines ideas from homotopy continuation and Newton's iterative methods. Theoretically, we establish the local convergence under appropriate conditions and show that the proposed method, geometrically, finds the solution by searching along the surface corresponding to one component of the nonlinear problem. We will demonstrate the robustness of the method on various numerical examples, including: (1) A six-moment one-dimensional entropy problem with an explicit solution that contains components of order $10^0-10^3$ in magnitude; (2) Four-moment multidimensional entropy problems with explicit solutions where the resulting systems to be solved ranging from $70-310$ equations; (3) Four- to eight-moment of a two-dimensional entropy problem, which solutions correspond to the densities of the two leading EOFs of the wind stress-driven large-scale oceanic model. In this case, we find that the EBE method is more accurate compared to the classical Newton's method, the MATLAB generic solver, and the previously developed BFGS-based method, which was also tested on this problem. (4) Four-moment constrained of up to five-dimensional entropy problems which solutions correspond to multidimensional densities of the components of the solutions of the Kuramoto-Sivashinsky equation. For the higher dimensional cases of this example, the EBE method is superior because it automatically selects a subset of the prescribed moment constraints from which the maximum entropy solution can be estimated within the desired tolerance. This selection feature is particularly important since the moment constrained maximum entropy problems do not necessarily have solutions in general.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/camcos.2018.13.189\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/camcos.2018.13.189","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种求解由多维变量矩约束最大熵问题引起的非线性方程组的逐方程求解方法。该方法的设计结合了同伦延拓和牛顿迭代法的思想。理论上,我们在适当的条件下建立了该方法的局部收敛性,并证明了该方法在几何上是沿非线性问题的一个分量对应的曲面搜索得到解。我们将在各种数值示例上证明该方法的鲁棒性,包括:(1)一个六矩一维熵问题,其显式解包含量级为$10^0-10^3$的分量;(2)具有显式解的四矩多维熵问题,其中待解的结果系统从$70- $ 310不等;(3)二维熵问题的4 ~ 8矩,其解对应于风应力驱动大尺度海洋模型的两个主要EOFs的密度。在这个案例中,我们发现EBE方法比经典的牛顿法、MATLAB通用求解器和之前开发的基于bfgs的方法更精确,并且也对该问题进行了测试。(4)五维熵问题的四矩约束,其解对应于Kuramoto-Sivashinsky方程解的分量的多维密度。对于本例的高维情况,EBE方法是优越的,因为它自动选择规定的力矩约束的子集,从中可以在所需的公差范围内估计最大熵解。这种选择特性特别重要,因为矩约束最大熵问题通常不一定有解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An equation-by-equation method for solving the multidimensional moment constrained maximum entropy problem
An equation-by-equation (EBE) method is proposed to solve a system of nonlinear equations arising from the moment constrained maximum entropy problem of multidimensional variables. The design of the EBE method combines ideas from homotopy continuation and Newton's iterative methods. Theoretically, we establish the local convergence under appropriate conditions and show that the proposed method, geometrically, finds the solution by searching along the surface corresponding to one component of the nonlinear problem. We will demonstrate the robustness of the method on various numerical examples, including: (1) A six-moment one-dimensional entropy problem with an explicit solution that contains components of order $10^0-10^3$ in magnitude; (2) Four-moment multidimensional entropy problems with explicit solutions where the resulting systems to be solved ranging from $70-310$ equations; (3) Four- to eight-moment of a two-dimensional entropy problem, which solutions correspond to the densities of the two leading EOFs of the wind stress-driven large-scale oceanic model. In this case, we find that the EBE method is more accurate compared to the classical Newton's method, the MATLAB generic solver, and the previously developed BFGS-based method, which was also tested on this problem. (4) Four-moment constrained of up to five-dimensional entropy problems which solutions correspond to multidimensional densities of the components of the solutions of the Kuramoto-Sivashinsky equation. For the higher dimensional cases of this example, the EBE method is superior because it automatically selects a subset of the prescribed moment constraints from which the maximum entropy solution can be estimated within the desired tolerance. This selection feature is particularly important since the moment constrained maximum entropy problems do not necessarily have solutions in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1