Yannan Yang, Yunhuai Zhang, P. Xiao, Xiaoning Zhang, Lu Lu, Lu Li
{"title":"Ni纳米颗粒负载TiO2纳米管合成Ni/TiO2纳米复合材料","authors":"Yannan Yang, Yunhuai Zhang, P. Xiao, Xiaoning Zhang, Lu Lu, Lu Li","doi":"10.1109/INEC.2010.5425035","DOIUrl":null,"url":null,"abstract":"Synthesis of Ni nanoparticles on TiO2 nanotubes was carried out using a pulsed electrodeposition technique. TiO2 nanotubes were fabricated by anodization. The influence of the pulse electrodeposition conditions (current amplitudes, pulse time of negative current and substrate conductivity) was investigated on the surface morphology of Ni electrodeposited on TiO2 nanotube arrays. The particle size and surface morphology of Ni deposits were studied by field emission scanning electron microscopy (FESEM). The result indicated that the average size of Ni nanoparticles was varied from 20 to 43 nm. The phase structure of Ni/TiO2 materials was studied by X-ray diffraction (XRD). The experiment found that enhancing the conductivity of the TiO2 nanotubes was a key factor for the successful deposition of Ni nanoparticles.","PeriodicalId":6390,"journal":{"name":"2010 3rd International Nanoelectronics Conference (INEC)","volume":"44 1","pages":"1059-1060"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Ni/TiO2 nanocomposite by loading TiO2 nanotubes with Ni nanoparticles\",\"authors\":\"Yannan Yang, Yunhuai Zhang, P. Xiao, Xiaoning Zhang, Lu Lu, Lu Li\",\"doi\":\"10.1109/INEC.2010.5425035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesis of Ni nanoparticles on TiO2 nanotubes was carried out using a pulsed electrodeposition technique. TiO2 nanotubes were fabricated by anodization. The influence of the pulse electrodeposition conditions (current amplitudes, pulse time of negative current and substrate conductivity) was investigated on the surface morphology of Ni electrodeposited on TiO2 nanotube arrays. The particle size and surface morphology of Ni deposits were studied by field emission scanning electron microscopy (FESEM). The result indicated that the average size of Ni nanoparticles was varied from 20 to 43 nm. The phase structure of Ni/TiO2 materials was studied by X-ray diffraction (XRD). The experiment found that enhancing the conductivity of the TiO2 nanotubes was a key factor for the successful deposition of Ni nanoparticles.\",\"PeriodicalId\":6390,\"journal\":{\"name\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"volume\":\"44 1\",\"pages\":\"1059-1060\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INEC.2010.5425035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2010.5425035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of Ni/TiO2 nanocomposite by loading TiO2 nanotubes with Ni nanoparticles
Synthesis of Ni nanoparticles on TiO2 nanotubes was carried out using a pulsed electrodeposition technique. TiO2 nanotubes were fabricated by anodization. The influence of the pulse electrodeposition conditions (current amplitudes, pulse time of negative current and substrate conductivity) was investigated on the surface morphology of Ni electrodeposited on TiO2 nanotube arrays. The particle size and surface morphology of Ni deposits were studied by field emission scanning electron microscopy (FESEM). The result indicated that the average size of Ni nanoparticles was varied from 20 to 43 nm. The phase structure of Ni/TiO2 materials was studied by X-ray diffraction (XRD). The experiment found that enhancing the conductivity of the TiO2 nanotubes was a key factor for the successful deposition of Ni nanoparticles.