{"title":"基于典型切割的随机图像分割","authors":"Yoram Gdalyahu, D. Weinshall, M. Werman","doi":"10.1109/CVPR.1999.784979","DOIUrl":null,"url":null,"abstract":"We present a stochastic clustering algorithm which uses pairwise similarity of elements, based on a new graph theoretical algorithm for the sampling of cuts in graphs. The stochastic nature of our method makes it robust against noise, including accidental edges and small spurious clusters. We demonstrate the robustness and superiority of our method for image segmentation on a few synthetic examples where other recently proposed methods (such as normalized-cut) fail. In addition, the complexity of our method is lower. We describe experiments with real images showing good segmentation results.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"46 1","pages":"596-601 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Stochastic image segmentation by typical cuts\",\"authors\":\"Yoram Gdalyahu, D. Weinshall, M. Werman\",\"doi\":\"10.1109/CVPR.1999.784979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a stochastic clustering algorithm which uses pairwise similarity of elements, based on a new graph theoretical algorithm for the sampling of cuts in graphs. The stochastic nature of our method makes it robust against noise, including accidental edges and small spurious clusters. We demonstrate the robustness and superiority of our method for image segmentation on a few synthetic examples where other recently proposed methods (such as normalized-cut) fail. In addition, the complexity of our method is lower. We describe experiments with real images showing good segmentation results.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"46 1\",\"pages\":\"596-601 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a stochastic clustering algorithm which uses pairwise similarity of elements, based on a new graph theoretical algorithm for the sampling of cuts in graphs. The stochastic nature of our method makes it robust against noise, including accidental edges and small spurious clusters. We demonstrate the robustness and superiority of our method for image segmentation on a few synthetic examples where other recently proposed methods (such as normalized-cut) fail. In addition, the complexity of our method is lower. We describe experiments with real images showing good segmentation results.