{"title":"In0.53Ga0.47As中非非晶高温Si+植入物的活化和缺陷溶解","authors":"A. G. Lind, K. Jones, C. Hatem","doi":"10.1109/IIT.2014.6939962","DOIUrl":null,"url":null,"abstract":"A range of implant temperatures from 20 to 300C are studied for fixed 20 keV implant energy and 6E14 cm-2 dose Si implants into In0.53Ga0.47As. Hall effect measurements performed on the samples after rapid thermal annealing reveal that Si implant activation is actually maximized for intermediate implant temperatures from 50-110C that are shown to be non-amorphizing. While these results echo the conclusion of previous studies that elevated temperature Si implants into In0.53Ga0.47As show increased activation over implants that are likely amorphizing, it is clear that there is a temperature window from 50-110C where activation is improved with increasing thermal budget for the dose and energy studied. Calculated Si solubilities of up to 1.3E19 cm-3 and sheet resistances as low as 26 ohm/sq are achieved for a 10 keV 5E14 cm-2 Si implant performed at 80C after 750C 5s annealing.","PeriodicalId":6548,"journal":{"name":"2014 20th International Conference on Ion Implantation Technology (IIT)","volume":"69 3 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Activation and defect dissolution of non-amorphizing, elevated temperature Si+ implants into In0.53Ga0.47As\",\"authors\":\"A. G. Lind, K. Jones, C. Hatem\",\"doi\":\"10.1109/IIT.2014.6939962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A range of implant temperatures from 20 to 300C are studied for fixed 20 keV implant energy and 6E14 cm-2 dose Si implants into In0.53Ga0.47As. Hall effect measurements performed on the samples after rapid thermal annealing reveal that Si implant activation is actually maximized for intermediate implant temperatures from 50-110C that are shown to be non-amorphizing. While these results echo the conclusion of previous studies that elevated temperature Si implants into In0.53Ga0.47As show increased activation over implants that are likely amorphizing, it is clear that there is a temperature window from 50-110C where activation is improved with increasing thermal budget for the dose and energy studied. Calculated Si solubilities of up to 1.3E19 cm-3 and sheet resistances as low as 26 ohm/sq are achieved for a 10 keV 5E14 cm-2 Si implant performed at 80C after 750C 5s annealing.\",\"PeriodicalId\":6548,\"journal\":{\"name\":\"2014 20th International Conference on Ion Implantation Technology (IIT)\",\"volume\":\"69 3 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 20th International Conference on Ion Implantation Technology (IIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIT.2014.6939962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th International Conference on Ion Implantation Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2014.6939962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Activation and defect dissolution of non-amorphizing, elevated temperature Si+ implants into In0.53Ga0.47As
A range of implant temperatures from 20 to 300C are studied for fixed 20 keV implant energy and 6E14 cm-2 dose Si implants into In0.53Ga0.47As. Hall effect measurements performed on the samples after rapid thermal annealing reveal that Si implant activation is actually maximized for intermediate implant temperatures from 50-110C that are shown to be non-amorphizing. While these results echo the conclusion of previous studies that elevated temperature Si implants into In0.53Ga0.47As show increased activation over implants that are likely amorphizing, it is clear that there is a temperature window from 50-110C where activation is improved with increasing thermal budget for the dose and energy studied. Calculated Si solubilities of up to 1.3E19 cm-3 and sheet resistances as low as 26 ohm/sq are achieved for a 10 keV 5E14 cm-2 Si implant performed at 80C after 750C 5s annealing.