具有未知聚类的面板数据模型的标准误差

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-03-01 DOI:10.1016/j.jeconom.2020.08.006
Jushan Bai , Sung Hoon Choi , Yuan Liao
{"title":"具有未知聚类的面板数据模型的标准误差","authors":"Jushan Bai ,&nbsp;Sung Hoon Choi ,&nbsp;Yuan Liao","doi":"10.1016/j.jeconom.2020.08.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper develops a new standard-error estimator for linear panel data models. The proposed estimator is robust to heteroskedasticity, </span>serial correlation<span>, and cross-sectional correlation of unknown forms. The serial correlation is controlled by the Newey–West method. To control for cross-sectional correlations, we propose to use the thresholding<span> method, without assuming the clusters to be known. We establish the consistency of the proposed estimator. Monte Carlo simulations show the method works well. An empirical application is considered.</span></span></p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105004"},"PeriodicalIF":9.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Standard errors for panel data models with unknown clusters\",\"authors\":\"Jushan Bai ,&nbsp;Sung Hoon Choi ,&nbsp;Yuan Liao\",\"doi\":\"10.1016/j.jeconom.2020.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This paper develops a new standard-error estimator for linear panel data models. The proposed estimator is robust to heteroskedasticity, </span>serial correlation<span>, and cross-sectional correlation of unknown forms. The serial correlation is controlled by the Newey–West method. To control for cross-sectional correlations, we propose to use the thresholding<span> method, without assuming the clusters to be known. We establish the consistency of the proposed estimator. Monte Carlo simulations show the method works well. An empirical application is considered.</span></span></p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"240 2\",\"pages\":\"Article 105004\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407620303341\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407620303341","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文为线性面板数据模型开发了一种新的标准误差估计器。所提出的估计器对未知形式的异方差、序列相关和横截面相关具有鲁棒性。序列相关由 Newey-West 方法控制。为了控制横截面相关性,我们建议使用阈值法,而不假定聚类是已知的。我们建立了拟议估计器的一致性。蒙特卡罗模拟显示该方法运行良好。我们还考虑了一个经验应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Standard errors for panel data models with unknown clusters

This paper develops a new standard-error estimator for linear panel data models. The proposed estimator is robust to heteroskedasticity, serial correlation, and cross-sectional correlation of unknown forms. The serial correlation is controlled by the Newey–West method. To control for cross-sectional correlations, we propose to use the thresholding method, without assuming the clusters to be known. We establish the consistency of the proposed estimator. Monte Carlo simulations show the method works well. An empirical application is considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Inference in cluster randomized trials with matched pairs Why are replication rates so low? On the spectral density of fractional Ornstein–Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1