全球变暖和水电站影响下水体的温度和冰态

V. Vyshnevskyi
{"title":"全球变暖和水电站影响下水体的温度和冰态","authors":"V. Vyshnevskyi","doi":"10.26491/MHWM/127538","DOIUrl":null,"url":null,"abstract":"Based on the results of regular monitoring and remote sensing data the patterns of water temperature and ice regime of the Dnipro River within Kyiv, as affected by global warming and a hydropower plant, were identified. The characteristic features of this stretch of the river are increasing water temperature, and the decreasing thickness and duration of ice cover. The largest water temperature increase is in summer, with a somewhat smaller increase in autumn. The increase of water temperature in spring is much less than the increase in air temperature. In summer, the gradient of water temperature increase is a little bit less than that of air temperature. In autumn, the gradient of water temperature increase is larger than the gradient of air temperature increase. From April to August the lowest water temperature is usually observed near the Kyivska hydropower plant (HPP), which is located upstream. During this period the water temperature downstream from HPP increases. The uneven daily operation of HPP causes the alternation of areas with different temperature along the Dnipro River. In the cold season the water temperature in the Dnipro River is usually higher than in other nearby urban water bodies. Freezing of the water area usually starts from the small and shallow lakes and ponds. The main branch of the Dnipro River freezes last. On the whole, the sequence of ice melting on the waterbodies is the reverse of the freezing process. The longest ice cover duration in spring is observed in the bays with small water exchange, mainly located at a large distance from Kyivska HPP.","PeriodicalId":42852,"journal":{"name":"Meteorology Hydrology and Water Management-Research and Operational Applications","volume":"16 3 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Temperature and ice regimes of waterbodies under impacts of global warming and a hydropower plant\",\"authors\":\"V. Vyshnevskyi\",\"doi\":\"10.26491/MHWM/127538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the results of regular monitoring and remote sensing data the patterns of water temperature and ice regime of the Dnipro River within Kyiv, as affected by global warming and a hydropower plant, were identified. The characteristic features of this stretch of the river are increasing water temperature, and the decreasing thickness and duration of ice cover. The largest water temperature increase is in summer, with a somewhat smaller increase in autumn. The increase of water temperature in spring is much less than the increase in air temperature. In summer, the gradient of water temperature increase is a little bit less than that of air temperature. In autumn, the gradient of water temperature increase is larger than the gradient of air temperature increase. From April to August the lowest water temperature is usually observed near the Kyivska hydropower plant (HPP), which is located upstream. During this period the water temperature downstream from HPP increases. The uneven daily operation of HPP causes the alternation of areas with different temperature along the Dnipro River. In the cold season the water temperature in the Dnipro River is usually higher than in other nearby urban water bodies. Freezing of the water area usually starts from the small and shallow lakes and ponds. The main branch of the Dnipro River freezes last. On the whole, the sequence of ice melting on the waterbodies is the reverse of the freezing process. The longest ice cover duration in spring is observed in the bays with small water exchange, mainly located at a large distance from Kyivska HPP.\",\"PeriodicalId\":42852,\"journal\":{\"name\":\"Meteorology Hydrology and Water Management-Research and Operational Applications\",\"volume\":\"16 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorology Hydrology and Water Management-Research and Operational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26491/MHWM/127538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorology Hydrology and Water Management-Research and Operational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26491/MHWM/127538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 4

摘要

根据定期监测和遥感数据的结果,确定了受全球变暖和一座水电站影响的基辅境内第聂伯罗河的水温和冰况模式。这段河流的特征是水温升高,冰盖厚度和持续时间减少。夏季水温上升幅度最大,秋季水温上升幅度较小。春季水温的上升幅度远小于气温的上升幅度。夏季水温上升的梯度略小于气温上升的梯度。在秋季,水温上升的梯度大于气温上升的梯度。从4月到8月,通常在上游的基夫斯卡水电站(HPP)附近观察到最低的水温。在此期间,HPP下游水温升高。HPP的日常运行不均匀,造成了第聂伯罗河沿岸不同温度区域的交替。在寒冷的季节,第聂伯罗河的水温通常比附近的其他城市水体要高。水域的结冰通常从小而浅的湖泊和池塘开始。第聂伯罗河的主要支流最后结冰。总的来说,水体上冰融化的顺序与冻结过程相反。春季冰雪覆盖持续时间最长的是水体交换量小的海湾,主要位于距Kyivska HPP较远的海域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature and ice regimes of waterbodies under impacts of global warming and a hydropower plant
Based on the results of regular monitoring and remote sensing data the patterns of water temperature and ice regime of the Dnipro River within Kyiv, as affected by global warming and a hydropower plant, were identified. The characteristic features of this stretch of the river are increasing water temperature, and the decreasing thickness and duration of ice cover. The largest water temperature increase is in summer, with a somewhat smaller increase in autumn. The increase of water temperature in spring is much less than the increase in air temperature. In summer, the gradient of water temperature increase is a little bit less than that of air temperature. In autumn, the gradient of water temperature increase is larger than the gradient of air temperature increase. From April to August the lowest water temperature is usually observed near the Kyivska hydropower plant (HPP), which is located upstream. During this period the water temperature downstream from HPP increases. The uneven daily operation of HPP causes the alternation of areas with different temperature along the Dnipro River. In the cold season the water temperature in the Dnipro River is usually higher than in other nearby urban water bodies. Freezing of the water area usually starts from the small and shallow lakes and ponds. The main branch of the Dnipro River freezes last. On the whole, the sequence of ice melting on the waterbodies is the reverse of the freezing process. The longest ice cover duration in spring is observed in the bays with small water exchange, mainly located at a large distance from Kyivska HPP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
期刊最新文献
Hydrologic drought characteristics of selected basins in various climate zones of Lebanon Comparison and combination of interpolation methods for daily precipitation in Poland: evaluation using the correlation coefficient and correspondence ratio Non-homogeneity of hydrometric data and estimating the rating curve Trends and fluctuations of river ice regimes in the Prypiat Basin, within Ukraine Assessing the impact of climate change on discharge in the Horyn River basin by analyzing precipitation and temperature data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1