Asieh Akhoondi, Usisipho Feleni, B. Bethi, A. Idris, A. Hojjati-Najafabadi
{"title":"金属基钒酸盐复合光催化剂的合成、性能及应用研究进展","authors":"Asieh Akhoondi, Usisipho Feleni, B. Bethi, A. Idris, A. Hojjati-Najafabadi","doi":"10.53063/synsint.2021.1344","DOIUrl":null,"url":null,"abstract":"Among the ongoing research on photocatalysis under visible-light, it has been shown that doped or hybrid catalysts are more active than a single catalyst alone. However, problems including visible light absorption, a low quantity of energetic sites on surfaces, and rapid recombination of the photo-electron hole pair produced by light have prohibited photocatalysts from being used in a practical and widespread manner. To overcome these problems, synthesis of nanostructure hybrid catalyst using several methods has attracted much attention. Several procedures have been suggested for the preparation of photocatalysts with the desired structure and morphology. Preparation methods similar to partial modification may lead to diverse structures and qualities. In this regard, the development of efficient, low-cost photocatalysts and rapid synthesis is the most important issues that should be considered. This review discusses various methods and mechanisms that work with the modification of vanadium compounds as photocatalysts to progress their photocatalytic efficiency. In addition, the effects of synthesis temperature, solution pH and concentration on the photocatalytic performance are also described in detail.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Advances in metal-based vanadate compound photocatalysts: synthesis, properties and applications\",\"authors\":\"Asieh Akhoondi, Usisipho Feleni, B. Bethi, A. Idris, A. Hojjati-Najafabadi\",\"doi\":\"10.53063/synsint.2021.1344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the ongoing research on photocatalysis under visible-light, it has been shown that doped or hybrid catalysts are more active than a single catalyst alone. However, problems including visible light absorption, a low quantity of energetic sites on surfaces, and rapid recombination of the photo-electron hole pair produced by light have prohibited photocatalysts from being used in a practical and widespread manner. To overcome these problems, synthesis of nanostructure hybrid catalyst using several methods has attracted much attention. Several procedures have been suggested for the preparation of photocatalysts with the desired structure and morphology. Preparation methods similar to partial modification may lead to diverse structures and qualities. In this regard, the development of efficient, low-cost photocatalysts and rapid synthesis is the most important issues that should be considered. This review discusses various methods and mechanisms that work with the modification of vanadium compounds as photocatalysts to progress their photocatalytic efficiency. In addition, the effects of synthesis temperature, solution pH and concentration on the photocatalytic performance are also described in detail.\",\"PeriodicalId\":22113,\"journal\":{\"name\":\"Synthesis and Sintering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthesis and Sintering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53063/synsint.2021.1344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis and Sintering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53063/synsint.2021.1344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advances in metal-based vanadate compound photocatalysts: synthesis, properties and applications
Among the ongoing research on photocatalysis under visible-light, it has been shown that doped or hybrid catalysts are more active than a single catalyst alone. However, problems including visible light absorption, a low quantity of energetic sites on surfaces, and rapid recombination of the photo-electron hole pair produced by light have prohibited photocatalysts from being used in a practical and widespread manner. To overcome these problems, synthesis of nanostructure hybrid catalyst using several methods has attracted much attention. Several procedures have been suggested for the preparation of photocatalysts with the desired structure and morphology. Preparation methods similar to partial modification may lead to diverse structures and qualities. In this regard, the development of efficient, low-cost photocatalysts and rapid synthesis is the most important issues that should be considered. This review discusses various methods and mechanisms that work with the modification of vanadium compounds as photocatalysts to progress their photocatalytic efficiency. In addition, the effects of synthesis temperature, solution pH and concentration on the photocatalytic performance are also described in detail.