{"title":"提高图像序列重建三维点云的计算效率","authors":"Chih-Hsiang Chang, N. Kehtarnavaz","doi":"10.1109/ISM.2013.101","DOIUrl":null,"url":null,"abstract":"The Levenberg-Marquardt optimization is normally used in 3D point cloud reconstruction from image sequences which is computationally expensive. This paper presents a two-stage camera pose estimation approach where an initial camera pose is obtained during the first stage and a refinement is performed during the second stage. This approach does not require the use of the Levenberg-Marquardt optimization and LU matrix decomposition for computing the projection matrix, thus providing a more computationally efficient 3D point cloud reconstruction as compared to the existing approaches. The results obtained using real video sequences indicate that the introduced approach generates lower re-projection errors as well as faster 3D point cloud reconstruction.","PeriodicalId":6311,"journal":{"name":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","volume":"49 6 1","pages":"510-513"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Computational Efficiency of 3D Point Cloud Reconstruction from Image Sequences\",\"authors\":\"Chih-Hsiang Chang, N. Kehtarnavaz\",\"doi\":\"10.1109/ISM.2013.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Levenberg-Marquardt optimization is normally used in 3D point cloud reconstruction from image sequences which is computationally expensive. This paper presents a two-stage camera pose estimation approach where an initial camera pose is obtained during the first stage and a refinement is performed during the second stage. This approach does not require the use of the Levenberg-Marquardt optimization and LU matrix decomposition for computing the projection matrix, thus providing a more computationally efficient 3D point cloud reconstruction as compared to the existing approaches. The results obtained using real video sequences indicate that the introduced approach generates lower re-projection errors as well as faster 3D point cloud reconstruction.\",\"PeriodicalId\":6311,\"journal\":{\"name\":\"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)\",\"volume\":\"49 6 1\",\"pages\":\"510-513\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2013.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2013.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Computational Efficiency of 3D Point Cloud Reconstruction from Image Sequences
The Levenberg-Marquardt optimization is normally used in 3D point cloud reconstruction from image sequences which is computationally expensive. This paper presents a two-stage camera pose estimation approach where an initial camera pose is obtained during the first stage and a refinement is performed during the second stage. This approach does not require the use of the Levenberg-Marquardt optimization and LU matrix decomposition for computing the projection matrix, thus providing a more computationally efficient 3D point cloud reconstruction as compared to the existing approaches. The results obtained using real video sequences indicate that the introduced approach generates lower re-projection errors as well as faster 3D point cloud reconstruction.