CoMP-JT大规模MIMO系统的最大广义特征向量预编码器

Xianglong Yu, Hanqing Wang, Yiling Yuan, Xiaohan Wang, Hao Chen
{"title":"CoMP-JT大规模MIMO系统的最大广义特征向量预编码器","authors":"Xianglong Yu, Hanqing Wang, Yiling Yuan, Xiaohan Wang, Hao Chen","doi":"10.1109/EuCNC/6GSummit58263.2023.10188356","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the downlink (DL) precoder design in coordinated multi-point joint transmission massive multiple-input multiple-output systems. The DL precoder design problem is formulate to maximize the sum-rate under the per base station transmit power constraint. Utilizing the first-order condition, the structure of the optimal precoder is derived, involving the generalized eigenvectors of a pair of matrices. In accordance with this, the largest generalized eigenvector (LGEV) precoder is proposed to solve the first-order condition in an iterative manner, which involves solving the complicated generalized eigenvalue problem in each iteration. Specifically, we propose to solve the eigenvalue problem numerically for low-complexity implementation based on the inverse free Krylov subspace method. Simulation results demonstrate that the proposed LGEV precoder achieves satisfactory performances with fast convergences within a couple of iterations.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"78 1","pages":"114-119"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Largest Generalized Eigenvector Precoder for CoMP-JT Massive MIMO Systems\",\"authors\":\"Xianglong Yu, Hanqing Wang, Yiling Yuan, Xiaohan Wang, Hao Chen\",\"doi\":\"10.1109/EuCNC/6GSummit58263.2023.10188356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the downlink (DL) precoder design in coordinated multi-point joint transmission massive multiple-input multiple-output systems. The DL precoder design problem is formulate to maximize the sum-rate under the per base station transmit power constraint. Utilizing the first-order condition, the structure of the optimal precoder is derived, involving the generalized eigenvectors of a pair of matrices. In accordance with this, the largest generalized eigenvector (LGEV) precoder is proposed to solve the first-order condition in an iterative manner, which involves solving the complicated generalized eigenvalue problem in each iteration. Specifically, we propose to solve the eigenvalue problem numerically for low-complexity implementation based on the inverse free Krylov subspace method. Simulation results demonstrate that the proposed LGEV precoder achieves satisfactory performances with fast convergences within a couple of iterations.\",\"PeriodicalId\":65870,\"journal\":{\"name\":\"公共管理高层论坛\",\"volume\":\"78 1\",\"pages\":\"114-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"公共管理高层论坛\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了协调多点联合传输大规模多输入多输出系统中的下行链路预编码器设计。提出了在每个基站发射功率约束下,最大限度地提高和速率的DL预编码器设计问题。利用一阶条件,导出了最优预编码器的结构,该结构涉及一对矩阵的广义特征向量。据此,提出了最大广义特征向量(LGEV)预编码器,以迭代的方式求解一阶条件,这涉及到在每次迭代中求解复杂的广义特征值问题。具体而言,我们提出了基于自由逆Krylov子空间方法的低复杂度实现的特征值问题的数值求解。仿真结果表明,所提出的LGEV预编码器在几次迭代内取得了令人满意的性能,收敛速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Largest Generalized Eigenvector Precoder for CoMP-JT Massive MIMO Systems
In this paper, we investigate the downlink (DL) precoder design in coordinated multi-point joint transmission massive multiple-input multiple-output systems. The DL precoder design problem is formulate to maximize the sum-rate under the per base station transmit power constraint. Utilizing the first-order condition, the structure of the optimal precoder is derived, involving the generalized eigenvectors of a pair of matrices. In accordance with this, the largest generalized eigenvector (LGEV) precoder is proposed to solve the first-order condition in an iterative manner, which involves solving the complicated generalized eigenvalue problem in each iteration. Specifically, we propose to solve the eigenvalue problem numerically for low-complexity implementation based on the inverse free Krylov subspace method. Simulation results demonstrate that the proposed LGEV precoder achieves satisfactory performances with fast convergences within a couple of iterations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
385
期刊最新文献
Undersampling and SNR Degradation in Practical Direct RF Sampling Systems Research Challenges in Trustworthy Artificial Intelligence and Computing for Health: The Case of the PRE-ACT project Inter-Satellite Link Prediction for Non-Terrestrial Networks Using Supervised Learning AI-Powered Edge Computing Evolution for Beyond 5G Communication Networks Phase Modulation-based Fronthaul Network for 5G mmWave FR-2 Signal Transmission over Hybrid Links
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1