散焦光镊的光强分布和捕获势

Hreedish Kakoty, Ambarish Ghosh
{"title":"散焦光镊的光强分布和捕获势","authors":"Hreedish Kakoty, Ambarish Ghosh","doi":"10.1109/icee44586.2018.8937889","DOIUrl":null,"url":null,"abstract":"Optical trapping technique has been used for various purposes since its advent [1]. One of the interesting applications of optical trapping has been to manipulate large assemblies of colloidal particles. In this paper we investigate a defocussed optical tweezer created by a low numerical aperture objective whose focal plane is controlled by an external telescope assembly [2]. We observe the intensity profile of this trapping beam away from the focal plane and model this intensity distribution using Fresnel Kirchoff integral. We show a close match between our observations and theoretical distribution. We correlate this intensity profile with the potential of the optical trap for a small particle in Rayleigh regime. By comparing this potential with the thermal fluctuations we define a trapping width for small particles and show that it matches with our experimentally observed dimensions of assemblies of small colloids. This study shows that intensity distribution using Fresnel Kirchoff integral can be used to understand trapping of small particles.","PeriodicalId":6590,"journal":{"name":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","volume":"57 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intensity Distribution and Trapping Potential of a Defocussed Optical Tweezer\",\"authors\":\"Hreedish Kakoty, Ambarish Ghosh\",\"doi\":\"10.1109/icee44586.2018.8937889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical trapping technique has been used for various purposes since its advent [1]. One of the interesting applications of optical trapping has been to manipulate large assemblies of colloidal particles. In this paper we investigate a defocussed optical tweezer created by a low numerical aperture objective whose focal plane is controlled by an external telescope assembly [2]. We observe the intensity profile of this trapping beam away from the focal plane and model this intensity distribution using Fresnel Kirchoff integral. We show a close match between our observations and theoretical distribution. We correlate this intensity profile with the potential of the optical trap for a small particle in Rayleigh regime. By comparing this potential with the thermal fluctuations we define a trapping width for small particles and show that it matches with our experimentally observed dimensions of assemblies of small colloids. This study shows that intensity distribution using Fresnel Kirchoff integral can be used to understand trapping of small particles.\",\"PeriodicalId\":6590,\"journal\":{\"name\":\"2018 4th IEEE International Conference on Emerging Electronics (ICEE)\",\"volume\":\"57 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th IEEE International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icee44586.2018.8937889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icee44586.2018.8937889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光捕获技术自问世以来已被用于各种目的[1]。光学捕获的一个有趣的应用是操纵胶体粒子的大集合。在本文中,我们研究了由低数值孔径物镜产生的散焦光镊,其焦平面由外部望远镜组件控制[2]。我们观察了远离焦平面的俘获光束的强度分布,并用菲涅耳-基尔霍夫积分对其进行了建模。我们的观测结果与理论分布非常吻合。我们将这种强度分布与瑞利区小粒子的光阱电位联系起来。通过与热波动的比较,我们确定了小颗粒的捕获宽度,并表明它与我们实验观察到的小胶体集合的尺寸相匹配。研究表明,利用菲涅耳基尔霍夫积分的强度分布可以用来理解小粒子的俘获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intensity Distribution and Trapping Potential of a Defocussed Optical Tweezer
Optical trapping technique has been used for various purposes since its advent [1]. One of the interesting applications of optical trapping has been to manipulate large assemblies of colloidal particles. In this paper we investigate a defocussed optical tweezer created by a low numerical aperture objective whose focal plane is controlled by an external telescope assembly [2]. We observe the intensity profile of this trapping beam away from the focal plane and model this intensity distribution using Fresnel Kirchoff integral. We show a close match between our observations and theoretical distribution. We correlate this intensity profile with the potential of the optical trap for a small particle in Rayleigh regime. By comparing this potential with the thermal fluctuations we define a trapping width for small particles and show that it matches with our experimentally observed dimensions of assemblies of small colloids. This study shows that intensity distribution using Fresnel Kirchoff integral can be used to understand trapping of small particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comprehensive Computational Modelling Approach for Graphene FETs Thermoelectric Properties of CrI3 Monolayer A Simple Charge and Capacitance Compact Model for Asymmetric III-V DGFETs Using CCDA Selective dewetting of metal films for fabrication of atomically separated nanoplasmonic dimers SIMS characterization of TiN diffusion barrier layer on steel substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1