MLOps满足边缘计算:面向6G系统的嵌入式智能边缘平台

Nikos Psaromanolakis, V. Theodorou, Dimitrios Laskaratos, Ioannis Kalogeropoulos, Maria Eleftheria Vlontzou, Eleni Zarogianni, Georgios Samaras
{"title":"MLOps满足边缘计算:面向6G系统的嵌入式智能边缘平台","authors":"Nikos Psaromanolakis, V. Theodorou, Dimitrios Laskaratos, Ioannis Kalogeropoulos, Maria Eleftheria Vlontzou, Eleni Zarogianni, Georgios Samaras","doi":"10.1109/EuCNC/6GSummit58263.2023.10188244","DOIUrl":null,"url":null,"abstract":"The evolution towards more human-centered 6G networks requires the extension of network functionalities with advanced, pervasive automation features. In this direction, cloud-native, softwarized network functions and integration of extreme/far edge devices shall be supported by even more distributed and decomposable systems, such as Edge Cloud environments, while building on AI/ML data-driven mechanisms to improve their performance and resilience for the stringent requirements of next-generation applications. In this work, we propose an intelligence-native Edge Management Platform coupled with MLOps functionalities-the $\\pi$-Edge Platform-which encompasses automation features for cloud-native lifecycle management of Edge Services. Our introduced architecture incorporates MLOps services and processes, operating as integrated micro-services with the rest of the $\\pi$-Edge architectural components, ensuring the reliable operation and QoS of Edge network and application services. We experimentally validate our approach with a prototypical implementation of key $\\pi$-Edge features, including the incorporation of state-of-the-art ML models for performance prediction and anomaly detection, on a multi-media streaming use case based on scenarios from real production environment.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"13 1","pages":"496-501"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MLOps meets Edge Computing: an Edge Platform with Embedded Intelligence towards 6G Systems\",\"authors\":\"Nikos Psaromanolakis, V. Theodorou, Dimitrios Laskaratos, Ioannis Kalogeropoulos, Maria Eleftheria Vlontzou, Eleni Zarogianni, Georgios Samaras\",\"doi\":\"10.1109/EuCNC/6GSummit58263.2023.10188244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution towards more human-centered 6G networks requires the extension of network functionalities with advanced, pervasive automation features. In this direction, cloud-native, softwarized network functions and integration of extreme/far edge devices shall be supported by even more distributed and decomposable systems, such as Edge Cloud environments, while building on AI/ML data-driven mechanisms to improve their performance and resilience for the stringent requirements of next-generation applications. In this work, we propose an intelligence-native Edge Management Platform coupled with MLOps functionalities-the $\\\\pi$-Edge Platform-which encompasses automation features for cloud-native lifecycle management of Edge Services. Our introduced architecture incorporates MLOps services and processes, operating as integrated micro-services with the rest of the $\\\\pi$-Edge architectural components, ensuring the reliable operation and QoS of Edge network and application services. We experimentally validate our approach with a prototypical implementation of key $\\\\pi$-Edge features, including the incorporation of state-of-the-art ML models for performance prediction and anomaly detection, on a multi-media streaming use case based on scenarios from real production environment.\",\"PeriodicalId\":65870,\"journal\":{\"name\":\"公共管理高层论坛\",\"volume\":\"13 1\",\"pages\":\"496-501\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"公共管理高层论坛\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

向更加以人为中心的6G网络发展,需要通过先进的、普遍的自动化功能来扩展网络功能。在这个方向上,云原生的、软件化的网络功能和极/远边缘设备的集成将得到更加分布式和可分解的系统(如边缘云环境)的支持,同时建立在AI/ML数据驱动机制的基础上,以提高其性能和弹性,以满足下一代应用程序的严格要求。在这项工作中,我们提出了一个智能原生边缘管理平台,结合MLOps功能- $\pi$-Edge平台-它包含边缘服务云原生生命周期管理的自动化功能。我们引入的架构集成了MLOps服务和流程,与其他$\pi$-Edge架构组件作为集成微服务运行,确保Edge网络和应用服务的可靠运行和QoS。我们通过实验验证了我们的方法与关键$\pi$-Edge功能的原型实现,包括结合最先进的ML模型进行性能预测和异常检测,基于真实生产环境场景的多媒体流用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MLOps meets Edge Computing: an Edge Platform with Embedded Intelligence towards 6G Systems
The evolution towards more human-centered 6G networks requires the extension of network functionalities with advanced, pervasive automation features. In this direction, cloud-native, softwarized network functions and integration of extreme/far edge devices shall be supported by even more distributed and decomposable systems, such as Edge Cloud environments, while building on AI/ML data-driven mechanisms to improve their performance and resilience for the stringent requirements of next-generation applications. In this work, we propose an intelligence-native Edge Management Platform coupled with MLOps functionalities-the $\pi$-Edge Platform-which encompasses automation features for cloud-native lifecycle management of Edge Services. Our introduced architecture incorporates MLOps services and processes, operating as integrated micro-services with the rest of the $\pi$-Edge architectural components, ensuring the reliable operation and QoS of Edge network and application services. We experimentally validate our approach with a prototypical implementation of key $\pi$-Edge features, including the incorporation of state-of-the-art ML models for performance prediction and anomaly detection, on a multi-media streaming use case based on scenarios from real production environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
385
期刊最新文献
Undersampling and SNR Degradation in Practical Direct RF Sampling Systems Research Challenges in Trustworthy Artificial Intelligence and Computing for Health: The Case of the PRE-ACT project Inter-Satellite Link Prediction for Non-Terrestrial Networks Using Supervised Learning AI-Powered Edge Computing Evolution for Beyond 5G Communication Networks Phase Modulation-based Fronthaul Network for 5G mmWave FR-2 Signal Transmission over Hybrid Links
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1