{"title":"基于模型的离群点检测文本聚类方法","authors":"Jianhua Yin, Jianyong Wang","doi":"10.1109/ICDE.2016.7498276","DOIUrl":null,"url":null,"abstract":"Text clustering is a challenging problem due to the high-dimensional and large-volume characteristics of text datasets. In this paper, we propose a collapsed Gibbs Sampling algorithm for the Dirichlet Process Multinomial Mixture model for text clustering (abbr. to GSDPMM) which does not need to specify the number of clusters in advance and can cope with the high-dimensional problem of text clustering. Our extensive experimental study shows that GSDPMM can achieve significantly better performance than three other clustering methods and can achieve high consistency on both long and short text datasets. We found that GSDPMM has low time and space complexity and can scale well with huge text datasets. We also propose some novel and effective methods to detect the outliers in the dataset and obtain the representative words of each cluster.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"116 1","pages":"625-636"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"A model-based approach for text clustering with outlier detection\",\"authors\":\"Jianhua Yin, Jianyong Wang\",\"doi\":\"10.1109/ICDE.2016.7498276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text clustering is a challenging problem due to the high-dimensional and large-volume characteristics of text datasets. In this paper, we propose a collapsed Gibbs Sampling algorithm for the Dirichlet Process Multinomial Mixture model for text clustering (abbr. to GSDPMM) which does not need to specify the number of clusters in advance and can cope with the high-dimensional problem of text clustering. Our extensive experimental study shows that GSDPMM can achieve significantly better performance than three other clustering methods and can achieve high consistency on both long and short text datasets. We found that GSDPMM has low time and space complexity and can scale well with huge text datasets. We also propose some novel and effective methods to detect the outliers in the dataset and obtain the representative words of each cluster.\",\"PeriodicalId\":6883,\"journal\":{\"name\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"volume\":\"116 1\",\"pages\":\"625-636\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2016.7498276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A model-based approach for text clustering with outlier detection
Text clustering is a challenging problem due to the high-dimensional and large-volume characteristics of text datasets. In this paper, we propose a collapsed Gibbs Sampling algorithm for the Dirichlet Process Multinomial Mixture model for text clustering (abbr. to GSDPMM) which does not need to specify the number of clusters in advance and can cope with the high-dimensional problem of text clustering. Our extensive experimental study shows that GSDPMM can achieve significantly better performance than three other clustering methods and can achieve high consistency on both long and short text datasets. We found that GSDPMM has low time and space complexity and can scale well with huge text datasets. We also propose some novel and effective methods to detect the outliers in the dataset and obtain the representative words of each cluster.