{"title":"微逆变器的控制作为高光伏渗透下的过电压预防方法","authors":"O. Gagrica, W. Kling, T. Uhl","doi":"10.7494/MECH.2013.32.2.52","DOIUrl":null,"url":null,"abstract":"Low voltage (LV) residential grids are generally not designed for high penetration of photovoltaic (PV) distributed generation. Maximization of PV output is not only opposed by solar energy intermittency, but also by grid impacts in form of reverse power flow and overvoltage. More intelligent control of PV inverters is required to balance the voltage requirements of the grid and maximum energy yield wanted by the end user. This paper discusses how micro-inverter topology could be utilized to handle overvoltage problem and avoid power output losses by applying an innovative control method. Control is realized as partial generation shedding at PV module level which is an optimized alternative comparing to conventional, entire PV array tripping in the event of overvoltage.","PeriodicalId":38333,"journal":{"name":"International Journal of Mechanics and Control","volume":"1 1","pages":"52-59"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control of micro-inverters as an overvoltage prevention method under high PV penetration\",\"authors\":\"O. Gagrica, W. Kling, T. Uhl\",\"doi\":\"10.7494/MECH.2013.32.2.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low voltage (LV) residential grids are generally not designed for high penetration of photovoltaic (PV) distributed generation. Maximization of PV output is not only opposed by solar energy intermittency, but also by grid impacts in form of reverse power flow and overvoltage. More intelligent control of PV inverters is required to balance the voltage requirements of the grid and maximum energy yield wanted by the end user. This paper discusses how micro-inverter topology could be utilized to handle overvoltage problem and avoid power output losses by applying an innovative control method. Control is realized as partial generation shedding at PV module level which is an optimized alternative comparing to conventional, entire PV array tripping in the event of overvoltage.\",\"PeriodicalId\":38333,\"journal\":{\"name\":\"International Journal of Mechanics and Control\",\"volume\":\"1 1\",\"pages\":\"52-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/MECH.2013.32.2.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MECH.2013.32.2.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Control of micro-inverters as an overvoltage prevention method under high PV penetration
Low voltage (LV) residential grids are generally not designed for high penetration of photovoltaic (PV) distributed generation. Maximization of PV output is not only opposed by solar energy intermittency, but also by grid impacts in form of reverse power flow and overvoltage. More intelligent control of PV inverters is required to balance the voltage requirements of the grid and maximum energy yield wanted by the end user. This paper discusses how micro-inverter topology could be utilized to handle overvoltage problem and avoid power output losses by applying an innovative control method. Control is realized as partial generation shedding at PV module level which is an optimized alternative comparing to conventional, entire PV array tripping in the event of overvoltage.