Natalia Sánchez, Montserrat Olivares-Costa, Marcela P. González, R. Munita, Angelica P. Escobar, Rodrigo C. Meza, Mauricio Herrera-Rojas, Jessica Albornoz, Gianluca Merello, M. Andrés
{"title":"淘汰赛还是淘汰赛?D2受体敲除小鼠脑内表达一种截断的D2受体蛋白","authors":"Natalia Sánchez, Montserrat Olivares-Costa, Marcela P. González, R. Munita, Angelica P. Escobar, Rodrigo C. Meza, Mauricio Herrera-Rojas, Jessica Albornoz, Gianluca Merello, M. Andrés","doi":"10.3390/NEUROSCI2020014","DOIUrl":null,"url":null,"abstract":"Null mice for the dopamine D2 receptor (D2R) have been instrumental in understanding the function of this protein. For our research, we obtained the functional D2R knockout mouse strain described initially in 1997. Surprisingly, our biochemical characterization showed that this mouse strain is not a true knockout. We determined by sequence analysis of the rapid 3′ amplification of cDNA ends that functional D2R knockout mice express transcripts that lack only the eighth exon. Furthermore, immunofluorescence assays showed a D2R-like protein in the brain of functional D2R knockout mice. We verified by immunofluorescence that the recombinant truncated D2R is expressed in HEK293T cells, showing intracellular localization, colocalizing in the Golgi apparatus and the endoplasmic reticulum, but with less presence in the Golgi apparatus compared to the native D2R. As previously reported, functional D2R knockout mice are hypoactive and insensitive to the D2R agonist quinpirole. Concordantly, microdialysis studies confirmed that functional D2R knockout mice have lower extracellular dopamine levels in the striatum than the native mice. In conclusion, functional D2R knockout mice express transcripts that lead to a truncated D2R protein lacking from the sixth transmembrane domain to the C-terminus. We share these findings to avoid future confusion and the community considers this mouse strain in D2R traffic and protein–protein interaction studies.","PeriodicalId":74294,"journal":{"name":"NeuroSci","volume":"197 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Knockout or Knock-in? A Truncated D2 Receptor Protein Is Expressed in the Brain of Functional D2 Receptor Knockout Mice\",\"authors\":\"Natalia Sánchez, Montserrat Olivares-Costa, Marcela P. González, R. Munita, Angelica P. Escobar, Rodrigo C. Meza, Mauricio Herrera-Rojas, Jessica Albornoz, Gianluca Merello, M. Andrés\",\"doi\":\"10.3390/NEUROSCI2020014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Null mice for the dopamine D2 receptor (D2R) have been instrumental in understanding the function of this protein. For our research, we obtained the functional D2R knockout mouse strain described initially in 1997. Surprisingly, our biochemical characterization showed that this mouse strain is not a true knockout. We determined by sequence analysis of the rapid 3′ amplification of cDNA ends that functional D2R knockout mice express transcripts that lack only the eighth exon. Furthermore, immunofluorescence assays showed a D2R-like protein in the brain of functional D2R knockout mice. We verified by immunofluorescence that the recombinant truncated D2R is expressed in HEK293T cells, showing intracellular localization, colocalizing in the Golgi apparatus and the endoplasmic reticulum, but with less presence in the Golgi apparatus compared to the native D2R. As previously reported, functional D2R knockout mice are hypoactive and insensitive to the D2R agonist quinpirole. Concordantly, microdialysis studies confirmed that functional D2R knockout mice have lower extracellular dopamine levels in the striatum than the native mice. In conclusion, functional D2R knockout mice express transcripts that lead to a truncated D2R protein lacking from the sixth transmembrane domain to the C-terminus. We share these findings to avoid future confusion and the community considers this mouse strain in D2R traffic and protein–protein interaction studies.\",\"PeriodicalId\":74294,\"journal\":{\"name\":\"NeuroSci\",\"volume\":\"197 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroSci\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/NEUROSCI2020014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/NEUROSCI2020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Knockout or Knock-in? A Truncated D2 Receptor Protein Is Expressed in the Brain of Functional D2 Receptor Knockout Mice
Null mice for the dopamine D2 receptor (D2R) have been instrumental in understanding the function of this protein. For our research, we obtained the functional D2R knockout mouse strain described initially in 1997. Surprisingly, our biochemical characterization showed that this mouse strain is not a true knockout. We determined by sequence analysis of the rapid 3′ amplification of cDNA ends that functional D2R knockout mice express transcripts that lack only the eighth exon. Furthermore, immunofluorescence assays showed a D2R-like protein in the brain of functional D2R knockout mice. We verified by immunofluorescence that the recombinant truncated D2R is expressed in HEK293T cells, showing intracellular localization, colocalizing in the Golgi apparatus and the endoplasmic reticulum, but with less presence in the Golgi apparatus compared to the native D2R. As previously reported, functional D2R knockout mice are hypoactive and insensitive to the D2R agonist quinpirole. Concordantly, microdialysis studies confirmed that functional D2R knockout mice have lower extracellular dopamine levels in the striatum than the native mice. In conclusion, functional D2R knockout mice express transcripts that lead to a truncated D2R protein lacking from the sixth transmembrane domain to the C-terminus. We share these findings to avoid future confusion and the community considers this mouse strain in D2R traffic and protein–protein interaction studies.