{"title":"基于强化学习的国际象棋引擎开发","authors":"Weidong Liao, Andrew Moseman","doi":"10.55632/pwvas.v95i2.990","DOIUrl":null,"url":null,"abstract":"Traditionally, chess engines use handcrafted evaluation functions based on human strategy. Recently, machine learning has been used as an alternative to direct position scoring. However, this typically involves training a model on human matches. Reinforcement learning has been shown to be a viable machine learning approach that, when combined with self play, can train a neural network for chess position evaluation without the need for human domain knowledge. This paper discusses our implementation of a reinforcement learning based chess engine, trained using self play. ","PeriodicalId":92280,"journal":{"name":"Proceedings of the West Virginia Academy of Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a Reinforcement Learning based Chess Engine\",\"authors\":\"Weidong Liao, Andrew Moseman\",\"doi\":\"10.55632/pwvas.v95i2.990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, chess engines use handcrafted evaluation functions based on human strategy. Recently, machine learning has been used as an alternative to direct position scoring. However, this typically involves training a model on human matches. Reinforcement learning has been shown to be a viable machine learning approach that, when combined with self play, can train a neural network for chess position evaluation without the need for human domain knowledge. This paper discusses our implementation of a reinforcement learning based chess engine, trained using self play. \",\"PeriodicalId\":92280,\"journal\":{\"name\":\"Proceedings of the West Virginia Academy of Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the West Virginia Academy of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55632/pwvas.v95i2.990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the West Virginia Academy of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55632/pwvas.v95i2.990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developing a Reinforcement Learning based Chess Engine
Traditionally, chess engines use handcrafted evaluation functions based on human strategy. Recently, machine learning has been used as an alternative to direct position scoring. However, this typically involves training a model on human matches. Reinforcement learning has been shown to be a viable machine learning approach that, when combined with self play, can train a neural network for chess position evaluation without the need for human domain knowledge. This paper discusses our implementation of a reinforcement learning based chess engine, trained using self play.