PREPARE:虚拟化云系统的预测性性能异常预防

Yongmin Tan, H. Nguyen, Zhiming Shen, Xiaohui Gu, C. Venkatramani, D. Rajan
{"title":"PREPARE:虚拟化云系统的预测性性能异常预防","authors":"Yongmin Tan, H. Nguyen, Zhiming Shen, Xiaohui Gu, C. Venkatramani, D. Rajan","doi":"10.1109/ICDCS.2012.65","DOIUrl":null,"url":null,"abstract":"Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention for virtualized cloud computing infrastructures. PREPARE integrates online anomaly prediction, learning-based cause inference, and predictive prevention actuation to minimize the performance anomaly penalty without human intervention. We have implemented PREPARE on top of the Xen platform and tested it on the NCSU's Virtual Computing Lab using a commercial data stream processing system (IBM System S) and an online auction benchmark (RUBiS). The experimental results show that PREPARE can effectively prevent performance anomalies while imposing low overhead to the cloud infrastructure.","PeriodicalId":6300,"journal":{"name":"2012 IEEE 32nd International Conference on Distributed Computing Systems","volume":"3 1","pages":"285-294"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"160","resultStr":"{\"title\":\"PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems\",\"authors\":\"Yongmin Tan, H. Nguyen, Zhiming Shen, Xiaohui Gu, C. Venkatramani, D. Rajan\",\"doi\":\"10.1109/ICDCS.2012.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention for virtualized cloud computing infrastructures. PREPARE integrates online anomaly prediction, learning-based cause inference, and predictive prevention actuation to minimize the performance anomaly penalty without human intervention. We have implemented PREPARE on top of the Xen platform and tested it on the NCSU's Virtual Computing Lab using a commercial data stream processing system (IBM System S) and an online auction benchmark (RUBiS). The experimental results show that PREPARE can effectively prevent performance anomalies while imposing low overhead to the cloud infrastructure.\",\"PeriodicalId\":6300,\"journal\":{\"name\":\"2012 IEEE 32nd International Conference on Distributed Computing Systems\",\"volume\":\"3 1\",\"pages\":\"285-294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"160\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 32nd International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2012.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 32nd International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2012.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 160

摘要

由于资源争夺、软件bug、硬件故障等原因,虚拟化云系统容易出现性能异常。在本文中,我们提出了一种新的预测性能异常预防(PREPARE)系统,为虚拟化云计算基础设施提供自动性能异常预防。PREPARE集成了在线异常预测、基于学习的原因推理和预测预防驱动,在没有人为干预的情况下最大限度地减少性能异常的损失。我们在Xen平台上实现了PREPARE,并在NCSU的虚拟计算实验室使用商业数据流处理系统(IBM system S)和在线拍卖基准(RUBiS)对其进行了测试。实验结果表明,PREPARE可以有效地防止性能异常,同时对云基础设施的开销很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems
Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention for virtualized cloud computing infrastructures. PREPARE integrates online anomaly prediction, learning-based cause inference, and predictive prevention actuation to minimize the performance anomaly penalty without human intervention. We have implemented PREPARE on top of the Xen platform and tested it on the NCSU's Virtual Computing Lab using a commercial data stream processing system (IBM System S) and an online auction benchmark (RUBiS). The experimental results show that PREPARE can effectively prevent performance anomalies while imposing low overhead to the cloud infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Simulation of Multiple Quantum well based InGaN/GaN Light Emitting Diode for High power applications Virtual Reality based System for Training and Monitoring Fire Safety Awareness for Children with Autism Spectrum Disorder A Cognitive Based Channel Assortment Using Ant-Colony Optimized Stable Path Selection in an IoTN Design and Implementation of DNA Based Cryptographic Algorithm A Compact Wearable 2.45 GHz Antenna for WBAN Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1