{"title":"诱发地震活动和地震风险管理——来自Californië地热田的展示(荷兰)","authors":"R. Vörös, S. Baisch","doi":"10.1017/njg.2022.12","DOIUrl":null,"url":null,"abstract":"Abstract Two closely spaced geothermal doublets were operated in the Californië geothermal field near Venlo, the Netherlands. The geothermal wells target the Dinantian Zeeland formation below 2 km depth. For several years, hot fluid was produced from the Tegelen fault, a regional fault in the Roer Valley rift system, until a felt M1.7 earthquake led to the suspension of geothermal activities. The Californië showcase provides a rare opportunity to retrospectively evaluate the assessment and the management of induced seismicity risks for a geothermal project. A seismic hazard assessment was conducted at several stages of the project, and seismicity was continuously monitored with a local station network. In this paper, we report on the characteristics of the induced seismicity and evaluate the findings of the seismic hazard assessments conducted prior to the earthquakes. Seismic hazard assessments were based on numerical simulations of subsurface stress changes associated with geothermal operations. A geomechanical analysis indicated that the mapped faults in the subsurface are likely to be critically stressed. The largest hazard was inferred to result from thermo-elastic stresses, originating from cold water injection close to the Tegelen fault. Subsequent earthquakes predominantly occurred near a production well after stopping or reducing production. We attributed this observation to a thermo-elastic stress load caused by cold water injection close to the Tegelen fault, combined with a counter-acting stabilisation of the fault due to pressure depletion during production. This mechanism was consistent with the dominating mechanism considered in the preceeding seismic hazard assessments. Although geothermal operations have not resumed yet, the geomechanical analysis indicates that re-locating one of the injection wells further away from the Tegelen fault could provide an efficient measure for mitigating induced seismicity risks at Californië.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"32 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Induced seismicity and seismic risk management – a showcase from the Californië geothermal field (the Netherlands)\",\"authors\":\"R. Vörös, S. Baisch\",\"doi\":\"10.1017/njg.2022.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Two closely spaced geothermal doublets were operated in the Californië geothermal field near Venlo, the Netherlands. The geothermal wells target the Dinantian Zeeland formation below 2 km depth. For several years, hot fluid was produced from the Tegelen fault, a regional fault in the Roer Valley rift system, until a felt M1.7 earthquake led to the suspension of geothermal activities. The Californië showcase provides a rare opportunity to retrospectively evaluate the assessment and the management of induced seismicity risks for a geothermal project. A seismic hazard assessment was conducted at several stages of the project, and seismicity was continuously monitored with a local station network. In this paper, we report on the characteristics of the induced seismicity and evaluate the findings of the seismic hazard assessments conducted prior to the earthquakes. Seismic hazard assessments were based on numerical simulations of subsurface stress changes associated with geothermal operations. A geomechanical analysis indicated that the mapped faults in the subsurface are likely to be critically stressed. The largest hazard was inferred to result from thermo-elastic stresses, originating from cold water injection close to the Tegelen fault. Subsequent earthquakes predominantly occurred near a production well after stopping or reducing production. We attributed this observation to a thermo-elastic stress load caused by cold water injection close to the Tegelen fault, combined with a counter-acting stabilisation of the fault due to pressure depletion during production. This mechanism was consistent with the dominating mechanism considered in the preceeding seismic hazard assessments. Although geothermal operations have not resumed yet, the geomechanical analysis indicates that re-locating one of the injection wells further away from the Tegelen fault could provide an efficient measure for mitigating induced seismicity risks at Californië.\",\"PeriodicalId\":49768,\"journal\":{\"name\":\"Netherlands Journal of Geosciences-Geologie En Mijnbouw\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netherlands Journal of Geosciences-Geologie En Mijnbouw\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/njg.2022.12\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/njg.2022.12","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Induced seismicity and seismic risk management – a showcase from the Californië geothermal field (the Netherlands)
Abstract Two closely spaced geothermal doublets were operated in the Californië geothermal field near Venlo, the Netherlands. The geothermal wells target the Dinantian Zeeland formation below 2 km depth. For several years, hot fluid was produced from the Tegelen fault, a regional fault in the Roer Valley rift system, until a felt M1.7 earthquake led to the suspension of geothermal activities. The Californië showcase provides a rare opportunity to retrospectively evaluate the assessment and the management of induced seismicity risks for a geothermal project. A seismic hazard assessment was conducted at several stages of the project, and seismicity was continuously monitored with a local station network. In this paper, we report on the characteristics of the induced seismicity and evaluate the findings of the seismic hazard assessments conducted prior to the earthquakes. Seismic hazard assessments were based on numerical simulations of subsurface stress changes associated with geothermal operations. A geomechanical analysis indicated that the mapped faults in the subsurface are likely to be critically stressed. The largest hazard was inferred to result from thermo-elastic stresses, originating from cold water injection close to the Tegelen fault. Subsequent earthquakes predominantly occurred near a production well after stopping or reducing production. We attributed this observation to a thermo-elastic stress load caused by cold water injection close to the Tegelen fault, combined with a counter-acting stabilisation of the fault due to pressure depletion during production. This mechanism was consistent with the dominating mechanism considered in the preceeding seismic hazard assessments. Although geothermal operations have not resumed yet, the geomechanical analysis indicates that re-locating one of the injection wells further away from the Tegelen fault could provide an efficient measure for mitigating induced seismicity risks at Californië.
期刊介绍:
Netherlands Journal of Geosciences - Geologie en Mijnbouw is a fully open access journal which publishes papers on all aspects of geoscience, providing they are of international interest and quality. As the official publication of the ''Netherlands Journal of Geosciences'' Foundation the journal publishes new and significant research in geosciences with a regional focus on the Netherlands, the North Sea region and relevant adjacent areas. A wide range of topics within the geosciences are covered in the journal, including "geology, physical geography, geophyics, (geo-)archeology, paleontology, hydro(geo)logy, hydrocarbon exploration, modelling and visualisation."
The journal is a continuation of Geologie and Mijnbouw (published by the Royal Geological and Mining Society of the Netherlands, KNGMG) and Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen (published by TNO Geological Survey of the Netherlands). The journal is published in full colour.