整合现有的水和废水资产,减少家庭供暖排放

IF 1 4区 工程技术 Q4 ENERGY & FUELS Proceedings of the Institution of Civil Engineers-Energy Pub Date : 2022-01-14 DOI:10.1680/jener.21.00064
Feng Liu, A. Schellart, J. Boxall, M. Mayfield, S. Tait
{"title":"整合现有的水和废水资产,减少家庭供暖排放","authors":"Feng Liu, A. Schellart, J. Boxall, M. Mayfield, S. Tait","doi":"10.1680/jener.21.00064","DOIUrl":null,"url":null,"abstract":"A study was undertaken to explore opportunities for achieving reducing greenhouse gas emissions from UK domestic heating by using existing drinking water and wastewater assets as energy storage and recovery mechanisms, coupled with modest local renewable energy generation. The sensitivity of the solutions to future projections for domestic heating demands and climate change effects was explored. Simulations optimised the available energy supply, potential for storage, heat recovery and heat demand to minimise emissions at a scale that could be adopted in most UK towns. The approach may be able to deliver significant emissions reductions with more limited capital investment than more centralised renewable energy approaches. Results from two UK locations showed that integrated water–energy systems could theoretically reduce emissions by about 50%. Furthermore, the system could satisfy demand for about 70% of the time periods each year. Future scenarios were tested and it was found that the projected annual emissions reduction was similar across all scenarios, suggesting this would be a robust approach.","PeriodicalId":48776,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Energy","volume":"67 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrating existing water and wastewater assets to reduce domestic heating emissions\",\"authors\":\"Feng Liu, A. Schellart, J. Boxall, M. Mayfield, S. Tait\",\"doi\":\"10.1680/jener.21.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A study was undertaken to explore opportunities for achieving reducing greenhouse gas emissions from UK domestic heating by using existing drinking water and wastewater assets as energy storage and recovery mechanisms, coupled with modest local renewable energy generation. The sensitivity of the solutions to future projections for domestic heating demands and climate change effects was explored. Simulations optimised the available energy supply, potential for storage, heat recovery and heat demand to minimise emissions at a scale that could be adopted in most UK towns. The approach may be able to deliver significant emissions reductions with more limited capital investment than more centralised renewable energy approaches. Results from two UK locations showed that integrated water–energy systems could theoretically reduce emissions by about 50%. Furthermore, the system could satisfy demand for about 70% of the time periods each year. Future scenarios were tested and it was found that the projected annual emissions reduction was similar across all scenarios, suggesting this would be a robust approach.\",\"PeriodicalId\":48776,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Energy\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jener.21.00064\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jener.21.00064","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

通过利用现有的饮用水和废水资产作为能源储存和回收机制,再加上适度的当地可再生能源发电,开展了一项研究,以探索实现减少英国家庭供暖温室气体排放的机会。探讨了解决方案对未来家庭供暖需求预测和气候变化影响的敏感性。模拟优化了可用的能源供应、储存潜力、热回收和热需求,以最大限度地减少排放,这在大多数英国城镇都可以采用。与更集中的可再生能源方法相比,这种方法可能能够以更有限的资本投资实现显著的减排。来自英国两个地区的结果表明,综合水能系统理论上可以减少约50%的排放量。此外,该系统可以满足每年约70%的时间段的需求。对未来情景进行了测试,发现预测的年减排量在所有情景中都是相似的,这表明这将是一种可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating existing water and wastewater assets to reduce domestic heating emissions
A study was undertaken to explore opportunities for achieving reducing greenhouse gas emissions from UK domestic heating by using existing drinking water and wastewater assets as energy storage and recovery mechanisms, coupled with modest local renewable energy generation. The sensitivity of the solutions to future projections for domestic heating demands and climate change effects was explored. Simulations optimised the available energy supply, potential for storage, heat recovery and heat demand to minimise emissions at a scale that could be adopted in most UK towns. The approach may be able to deliver significant emissions reductions with more limited capital investment than more centralised renewable energy approaches. Results from two UK locations showed that integrated water–energy systems could theoretically reduce emissions by about 50%. Furthermore, the system could satisfy demand for about 70% of the time periods each year. Future scenarios were tested and it was found that the projected annual emissions reduction was similar across all scenarios, suggesting this would be a robust approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
18.20%
发文量
35
期刊介绍: Energy addresses the challenges of energy engineering in the 21st century. The journal publishes groundbreaking papers on energy provision by leading figures in industry and academia and provides a unique forum for discussion on everything from underground coal gasification to the practical implications of biofuels. The journal is a key resource for engineers and researchers working to meet the challenges of energy engineering. Topics addressed include: development of sustainable energy policy, energy efficiency in buildings, infrastructure and transport systems, renewable energy sources, operation and decommissioning of projects, and energy conservation.
期刊最新文献
Municipal wastewater for energy generation: a favourable approach for developing nations Long-term heat storage opportunities of renewable energy for district heating networks ML based framework for optimal distributed generation management including EV loading Tidal range electricity generation into the 22nd century Wind energy potential assessment: a case study in Central India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1