山竹果皮提取物的植物介导合成纳米银及其抗菌潜力

N. G. Fundador, Mely Mariz S. Amargo, Ella Angelique M. Bucoya, E. Fundador
{"title":"山竹果皮提取物的植物介导合成纳米银及其抗菌潜力","authors":"N. G. Fundador, Mely Mariz S. Amargo, Ella Angelique M. Bucoya, E. Fundador","doi":"10.2174/2210681213666230416150715","DOIUrl":null,"url":null,"abstract":"\n\nSilver nanoparticles (AgNPs) were synthesized using mangosteen pericarp ethanolic extract (MPEE) as a source of bioreductants and their antimicrobial activity against common foodborne pathogens was evaluated.\n\n\n\nCharacterization of MPEE was conducted using phytochemical screening, total phenolic content analysis, and DPPH (antioxidant) assay. Synthesis AgNPs and optimization studies were monitored using UV-Vis spectrophotometry. Transmission electron microscopy was used to characterize the AgNPs, and resazurin microtiter assay was used for antimicrobial testing.\n\n\n\nAlkaloids, flavonoids, saponins, quinones, anthraquinones, and tannins were confirmed present in the extract. TPC and IC50 of MPEE were 0.192 mg GAE/mg extract and 0.277 mg/mL, respectively. A surface plasmon resonance (SPR) peak within 450-403 nm confirmed the formation of AgNPs. At pH 7, the optimum reaction conditions were 45 °C and 3 h. Meanwhile, at pH 9, the optimum reaction conditions were 27 °C and 0.5 h.\n\n\n\nThe sizes of nanoparticles synthesized at pH 7 and pH 9 were 13-35 nm and 7-38 nm, respectively. The minimum inhibitory concentration (MIC90) of AgNPs produced at pH 7 were 1.45, 2.81, and 2.93 ug/mL for S. aureus, E.coli, and B. cereus, respectively. For AgNPs synthesized at pH 9, the MIC90 were 2.93, 3.02, and 5.24 ug/mL, for the same microorganisms, respectively. MPEE was able to successfully synthesize AgNPs. Compared to chloramphenicol, AgNPs exhibited better antimicrobial activity, which can address the growing concern of drug resistance in certain pathogenic microorganisms. Furthermore, the use of MPEE provides a green and sustainable alternative to synthesizing AgNPs.\n","PeriodicalId":38913,"journal":{"name":"Nanoscience and Nanotechnology - Asia","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant-mediated synthesis of silver nanoparticles using mangosteen pericarp extract and their antimicrobial potential\",\"authors\":\"N. G. Fundador, Mely Mariz S. Amargo, Ella Angelique M. Bucoya, E. Fundador\",\"doi\":\"10.2174/2210681213666230416150715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nSilver nanoparticles (AgNPs) were synthesized using mangosteen pericarp ethanolic extract (MPEE) as a source of bioreductants and their antimicrobial activity against common foodborne pathogens was evaluated.\\n\\n\\n\\nCharacterization of MPEE was conducted using phytochemical screening, total phenolic content analysis, and DPPH (antioxidant) assay. Synthesis AgNPs and optimization studies were monitored using UV-Vis spectrophotometry. Transmission electron microscopy was used to characterize the AgNPs, and resazurin microtiter assay was used for antimicrobial testing.\\n\\n\\n\\nAlkaloids, flavonoids, saponins, quinones, anthraquinones, and tannins were confirmed present in the extract. TPC and IC50 of MPEE were 0.192 mg GAE/mg extract and 0.277 mg/mL, respectively. A surface plasmon resonance (SPR) peak within 450-403 nm confirmed the formation of AgNPs. At pH 7, the optimum reaction conditions were 45 °C and 3 h. Meanwhile, at pH 9, the optimum reaction conditions were 27 °C and 0.5 h.\\n\\n\\n\\nThe sizes of nanoparticles synthesized at pH 7 and pH 9 were 13-35 nm and 7-38 nm, respectively. The minimum inhibitory concentration (MIC90) of AgNPs produced at pH 7 were 1.45, 2.81, and 2.93 ug/mL for S. aureus, E.coli, and B. cereus, respectively. For AgNPs synthesized at pH 9, the MIC90 were 2.93, 3.02, and 5.24 ug/mL, for the same microorganisms, respectively. MPEE was able to successfully synthesize AgNPs. Compared to chloramphenicol, AgNPs exhibited better antimicrobial activity, which can address the growing concern of drug resistance in certain pathogenic microorganisms. Furthermore, the use of MPEE provides a green and sustainable alternative to synthesizing AgNPs.\\n\",\"PeriodicalId\":38913,\"journal\":{\"name\":\"Nanoscience and Nanotechnology - Asia\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Nanotechnology - Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210681213666230416150715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology - Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210681213666230416150715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

以山竹果皮乙醇提取物(MPEE)为原料合成了银纳米颗粒(AgNPs),并对其对常见食源性致病菌的抑菌活性进行了评价。通过植物化学筛选、总酚含量分析和DPPH(抗氧化)测定对MPEE进行了表征。采用紫外可见分光光度法对AgNPs的合成和优化研究进行了监测。采用透射电子显微镜对AgNPs进行表征,采用瑞祖林微滴度法进行抗菌检测。生物碱、黄酮类、皂苷、醌类、蒽醌类和单宁类被证实存在于提取物中。MPEE的TPC为0.192 mg GAE/mg提取物,IC50为0.277 mg/mL。450 ~ 403 nm范围内的表面等离子体共振峰(SPR)证实了AgNPs的形成。在pH 7条件下,最佳反应温度为45℃,反应时间为3 h,在pH 9条件下,最佳反应温度为27℃,反应时间为0.5 h,在pH 7和pH 9条件下合成的纳米颗粒尺寸分别为13 ~ 35 nm和7 ~ 38 nm。在pH 7条件下制备的AgNPs对金黄色葡萄球菌、大肠杆菌和蜡样芽孢杆菌的最小抑制浓度MIC90分别为1.45、2.81和2.93 ug/mL。对于pH为9时合成的AgNPs, MIC90分别为2.93、3.02和5.24 ug/mL。MPEE能够成功合成AgNPs。与氯霉素相比,AgNPs表现出更好的抗菌活性,可以解决某些致病微生物日益关注的耐药性问题。此外,MPEE的使用为合成AgNPs提供了一种绿色和可持续的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plant-mediated synthesis of silver nanoparticles using mangosteen pericarp extract and their antimicrobial potential
Silver nanoparticles (AgNPs) were synthesized using mangosteen pericarp ethanolic extract (MPEE) as a source of bioreductants and their antimicrobial activity against common foodborne pathogens was evaluated. Characterization of MPEE was conducted using phytochemical screening, total phenolic content analysis, and DPPH (antioxidant) assay. Synthesis AgNPs and optimization studies were monitored using UV-Vis spectrophotometry. Transmission electron microscopy was used to characterize the AgNPs, and resazurin microtiter assay was used for antimicrobial testing. Alkaloids, flavonoids, saponins, quinones, anthraquinones, and tannins were confirmed present in the extract. TPC and IC50 of MPEE were 0.192 mg GAE/mg extract and 0.277 mg/mL, respectively. A surface plasmon resonance (SPR) peak within 450-403 nm confirmed the formation of AgNPs. At pH 7, the optimum reaction conditions were 45 °C and 3 h. Meanwhile, at pH 9, the optimum reaction conditions were 27 °C and 0.5 h. The sizes of nanoparticles synthesized at pH 7 and pH 9 were 13-35 nm and 7-38 nm, respectively. The minimum inhibitory concentration (MIC90) of AgNPs produced at pH 7 were 1.45, 2.81, and 2.93 ug/mL for S. aureus, E.coli, and B. cereus, respectively. For AgNPs synthesized at pH 9, the MIC90 were 2.93, 3.02, and 5.24 ug/mL, for the same microorganisms, respectively. MPEE was able to successfully synthesize AgNPs. Compared to chloramphenicol, AgNPs exhibited better antimicrobial activity, which can address the growing concern of drug resistance in certain pathogenic microorganisms. Furthermore, the use of MPEE provides a green and sustainable alternative to synthesizing AgNPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscience and Nanotechnology - Asia
Nanoscience and Nanotechnology - Asia Engineering-Engineering (all)
CiteScore
1.90
自引率
0.00%
发文量
35
期刊介绍: Nanoscience & Nanotechnology-Asia publishes expert reviews, original research articles, letters and guest edited issues on all the most recent advances in nanoscience and nanotechnology with an emphasis on research in Asia and Japan. All aspects of the field are represented including chemistry, physics, materials science, biology and engineering mainly covering the following; synthesis, characterization, assembly, theory, and simulation of nanostructures (nanomaterials and assemblies, nanodevices, nano-bubbles, nano-droplets, nanofluidics, and self-assembled structures), nanofabrication, nanobiotechnology, nanomedicine and methods and tools for nanoscience and nanotechnology.
期刊最新文献
A Review on Novel Nanofiber-based Dermal Applications: Utilization of Polysaccharides Nanotechnology: A Promising Area in Medical Science Investigation of Therapeutic Potential of Biosynthesized Silver and Gold Nanoparticles Using Extract of Wrightia tinctoria Lipid-based Nanoparticles (LNP) Structures used for Drug Delivery and Targeting: Clinical Trials and Patents Metal-based nanoparticles in the treatment of infectious diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1