他们会还是不会?对Netflix系列视频时移边缘缓存的观看行为进行有效预测

Shruti Lall, Raghupathy Sivakumar
{"title":"他们会还是不会?对Netflix系列视频时移边缘缓存的观看行为进行有效预测","authors":"Shruti Lall, Raghupathy Sivakumar","doi":"10.1145/3453142.3493504","DOIUrl":null,"url":null,"abstract":"Internet traffic load is not uniformly distributed through the day; it is significantly higher during peak-periods, and comparatively idle during off-peak periods. In this context, we present CacheFlix, a time-shifted edge-caching solution that prefetches Netflix content during off-peak periods of network connectivity. We specifically focus on Netflix since it contributes to the largest percentage of global Internet traffic by a single application. We analyze a real-world dataset of Netflix viewing activity that we collected from 1060 users spanning a 1-year period and comprised of over 2.2 million Netflix TV shows and documentary series; we restrict the scope of our study to Netflix series that account for 65% of a typical user's Netflix load in terms of bytes fetched. We present insights on users' viewing behavior, and develop an accurate and efficient prediction algorithm using LSTM networks that caches episodes of Netflix series on storage constrained edge nodes, based on the user's past viewing activity. We evaluate CacheFlix on the collected dataset over various cache eviction policies, and find that CacheFlix is able to shift 70% of Netflix series traffic to off-peak hours.","PeriodicalId":6779,"journal":{"name":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"7 1","pages":"257-270"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Will They or Won't They?: Toward Effective Prediction of Watch Behavior for Time-Shifted Edge-Caching of Netflix Series Videos\",\"authors\":\"Shruti Lall, Raghupathy Sivakumar\",\"doi\":\"10.1145/3453142.3493504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet traffic load is not uniformly distributed through the day; it is significantly higher during peak-periods, and comparatively idle during off-peak periods. In this context, we present CacheFlix, a time-shifted edge-caching solution that prefetches Netflix content during off-peak periods of network connectivity. We specifically focus on Netflix since it contributes to the largest percentage of global Internet traffic by a single application. We analyze a real-world dataset of Netflix viewing activity that we collected from 1060 users spanning a 1-year period and comprised of over 2.2 million Netflix TV shows and documentary series; we restrict the scope of our study to Netflix series that account for 65% of a typical user's Netflix load in terms of bytes fetched. We present insights on users' viewing behavior, and develop an accurate and efficient prediction algorithm using LSTM networks that caches episodes of Netflix series on storage constrained edge nodes, based on the user's past viewing activity. We evaluate CacheFlix on the collected dataset over various cache eviction policies, and find that CacheFlix is able to shift 70% of Netflix series traffic to off-peak hours.\",\"PeriodicalId\":6779,\"journal\":{\"name\":\"2021 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"7 1\",\"pages\":\"257-270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453142.3493504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453142.3493504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

互联网流量负载在一天中分布不均匀;它在高峰期间明显更高,而在非高峰期间相对空闲。在这种情况下,我们提出了CacheFlix,这是一种时移边缘缓存解决方案,可以在网络连接非高峰期间预取Netflix内容。我们特别关注Netflix,因为它对单一应用程序的全球互联网流量贡献最大。我们分析了一个真实世界的Netflix观看活动数据集,我们从1060名用户那里收集了1年的时间,包括超过220万部Netflix电视节目和纪录片;我们将研究范围限制在Netflix连续剧上,这些连续剧占典型用户Netflix加载的65%。我们提出了对用户观看行为的见解,并使用LSTM网络开发了一种准确有效的预测算法,该算法基于用户过去的观看活动,在存储受限的边缘节点上缓存Netflix系列的剧集。我们在收集的数据集上对CacheFlix进行了各种缓存清除策略的评估,发现CacheFlix能够将70%的Netflix系列流量转移到非高峰时段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Will They or Won't They?: Toward Effective Prediction of Watch Behavior for Time-Shifted Edge-Caching of Netflix Series Videos
Internet traffic load is not uniformly distributed through the day; it is significantly higher during peak-periods, and comparatively idle during off-peak periods. In this context, we present CacheFlix, a time-shifted edge-caching solution that prefetches Netflix content during off-peak periods of network connectivity. We specifically focus on Netflix since it contributes to the largest percentage of global Internet traffic by a single application. We analyze a real-world dataset of Netflix viewing activity that we collected from 1060 users spanning a 1-year period and comprised of over 2.2 million Netflix TV shows and documentary series; we restrict the scope of our study to Netflix series that account for 65% of a typical user's Netflix load in terms of bytes fetched. We present insights on users' viewing behavior, and develop an accurate and efficient prediction algorithm using LSTM networks that caches episodes of Netflix series on storage constrained edge nodes, based on the user's past viewing activity. We evaluate CacheFlix on the collected dataset over various cache eviction policies, and find that CacheFlix is able to shift 70% of Netflix series traffic to off-peak hours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Driven Optimal Control Decision-Making System for Multiple Autonomous Vehicles The Performance Argument for Blockchain-based Edge DNS Caching LotteryFL: Empower Edge Intelligence with Personalized and Communication-Efficient Federated Learning Collaborative Cloud-Edge-Local Computation Offloading for Multi-Component Applications Poster: Enabling Flexible Edge-assisted XR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1