实时自动音乐转录(AMT)与Zync FPGA

Kevin Vaca, Archit Gajjar, Xiaokun Yang
{"title":"实时自动音乐转录(AMT)与Zync FPGA","authors":"Kevin Vaca, Archit Gajjar, Xiaokun Yang","doi":"10.1109/ISVLSI.2019.00075","DOIUrl":null,"url":null,"abstract":"A real-time automatic music transcription (AMT) system has a great potential for applications and interactions between people and music, such as the popular devices Amazon Echo and Google Home. This paper thus presents a design on chord recognition with the Zync7000 Field-Programmable Gate Array (FPGA), capable of sampling analog frequency signals through a microphone and, in real time, showing sheet music on a smart phone app that corresponds to the user's playing. We demonstrate the design of audio sampling on programming logic and the implementation of frequency transform and vector building on programming system, which is an embedded ARM core on the Zync FPGA. Experimental results show that the logic design spends 574 slices of look-up-tables (LUTs) and 792 slices of flip-flops. Due to the dynamic power consumption on programming system (1399 mW) being significantly higher than the dynamic power dissipation on programming logic (7 mW), the future work of this platform is to design intelligent property (IP) for algorithms of frequency transform, pitch class profile (PCP), and pattern matching with hardware description language (HDL), making the entire system-on-chip (SoC) able to be taped out as an application-specific design for consumer electronics.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"141 1","pages":"378-384"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Real-Time Automatic Music Transcription (AMT) with Zync FPGA\",\"authors\":\"Kevin Vaca, Archit Gajjar, Xiaokun Yang\",\"doi\":\"10.1109/ISVLSI.2019.00075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A real-time automatic music transcription (AMT) system has a great potential for applications and interactions between people and music, such as the popular devices Amazon Echo and Google Home. This paper thus presents a design on chord recognition with the Zync7000 Field-Programmable Gate Array (FPGA), capable of sampling analog frequency signals through a microphone and, in real time, showing sheet music on a smart phone app that corresponds to the user's playing. We demonstrate the design of audio sampling on programming logic and the implementation of frequency transform and vector building on programming system, which is an embedded ARM core on the Zync FPGA. Experimental results show that the logic design spends 574 slices of look-up-tables (LUTs) and 792 slices of flip-flops. Due to the dynamic power consumption on programming system (1399 mW) being significantly higher than the dynamic power dissipation on programming logic (7 mW), the future work of this platform is to design intelligent property (IP) for algorithms of frequency transform, pitch class profile (PCP), and pattern matching with hardware description language (HDL), making the entire system-on-chip (SoC) able to be taped out as an application-specific design for consumer electronics.\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"141 1\",\"pages\":\"378-384\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

实时自动音乐转录(AMT)系统在人与音乐之间的应用和互动方面具有巨大的潜力,例如流行的设备亚马逊Echo和谷歌Home。因此,本文提出了一种使用Zync7000现场可编程门阵列(FPGA)的和弦识别设计,该设计能够通过麦克风采样模拟频率信号,并实时在智能手机应用程序上显示与用户演奏相对应的乐谱。我们演示了基于编程逻辑的音频采样设计,以及基于Zync FPGA的嵌入式ARM内核的编程系统的频率变换和矢量构建的实现。实验结果表明,该逻辑设计耗费了574片查找表和792片触发器。由于编程系统的动态功耗(1399 mW)明显高于编程逻辑的动态功耗(7 mW),因此该平台的未来工作是为频率变换、音调类轮廓(PCP)和与硬件描述语言(HDL)的模式匹配算法设计智能产权(IP),使整个片上系统(SoC)能够作为消费电子产品的特定应用设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time Automatic Music Transcription (AMT) with Zync FPGA
A real-time automatic music transcription (AMT) system has a great potential for applications and interactions between people and music, such as the popular devices Amazon Echo and Google Home. This paper thus presents a design on chord recognition with the Zync7000 Field-Programmable Gate Array (FPGA), capable of sampling analog frequency signals through a microphone and, in real time, showing sheet music on a smart phone app that corresponds to the user's playing. We demonstrate the design of audio sampling on programming logic and the implementation of frequency transform and vector building on programming system, which is an embedded ARM core on the Zync FPGA. Experimental results show that the logic design spends 574 slices of look-up-tables (LUTs) and 792 slices of flip-flops. Due to the dynamic power consumption on programming system (1399 mW) being significantly higher than the dynamic power dissipation on programming logic (7 mW), the future work of this platform is to design intelligent property (IP) for algorithms of frequency transform, pitch class profile (PCP), and pattern matching with hardware description language (HDL), making the entire system-on-chip (SoC) able to be taped out as an application-specific design for consumer electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ferroelectric FET Based TCAM Designs for Energy Efficient Computing Evaluation of Compilers Effects on OpenMP Soft Error Resiliency Towards Efficient Compact Network Training on Edge-Devices PageCmp: Bandwidth Efficient Page Deduplication through In-memory Page Comparison Improving Logic Optimization in Sequential Circuits using Majority-inverter Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1