低有效维数函数无约束全局优化的降维技术

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2020-03-21 DOI:10.1093/IMAIAI/IAAB011
C. Cartis, Adilet Otemissov
{"title":"低有效维数函数无约束全局优化的降维技术","authors":"C. Cartis, Adilet Otemissov","doi":"10.1093/IMAIAI/IAAB011","DOIUrl":null,"url":null,"abstract":"\n We investigate the unconstrained global optimization of functions with low effective dimensionality, which are constant along certain (unknown) linear subspaces. Extending the technique of random subspace embeddings in Wang et al. (2016, J. Artificial Intelligence Res., 55, 361–387), we study a generic Random Embeddings for Global Optimization (REGO) framework that is compatible with any global minimization algorithm. Instead of the original, potentially large-scale optimization problem, within REGO, a Gaussian random, low-dimensional problem with bound constraints is formulated and solved in a reduced space. We provide novel probabilistic bounds for the success of REGO in solving the original, low effective-dimensionality problem, which show its independence of the (potentially large) ambient dimension and its precise dependence on the dimensions of the effective and embedding subspaces. These results significantly improve existing theoretical analyses by providing the exact distribution of a reduced minimizer and its Euclidean norm and by the general assumptions required on the problem. We validate our theoretical findings by extensive numerical testing of REGO with three types of global optimization solvers, illustrating the improved scalability of REGO compared with the full-dimensional application of the respective solvers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A dimensionality reduction technique for unconstrained global optimization of functions with low effective dimensionality\",\"authors\":\"C. Cartis, Adilet Otemissov\",\"doi\":\"10.1093/IMAIAI/IAAB011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We investigate the unconstrained global optimization of functions with low effective dimensionality, which are constant along certain (unknown) linear subspaces. Extending the technique of random subspace embeddings in Wang et al. (2016, J. Artificial Intelligence Res., 55, 361–387), we study a generic Random Embeddings for Global Optimization (REGO) framework that is compatible with any global minimization algorithm. Instead of the original, potentially large-scale optimization problem, within REGO, a Gaussian random, low-dimensional problem with bound constraints is formulated and solved in a reduced space. We provide novel probabilistic bounds for the success of REGO in solving the original, low effective-dimensionality problem, which show its independence of the (potentially large) ambient dimension and its precise dependence on the dimensions of the effective and embedding subspaces. These results significantly improve existing theoretical analyses by providing the exact distribution of a reduced minimizer and its Euclidean norm and by the general assumptions required on the problem. We validate our theoretical findings by extensive numerical testing of REGO with three types of global optimization solvers, illustrating the improved scalability of REGO compared with the full-dimensional application of the respective solvers.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/IMAIAI/IAAB011\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/IMAIAI/IAAB011","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

摘要

研究了低有效维数函数沿某(未知)线性子空间的无约束全局优化问题。在Wang等人(2016,J. Artificial Intelligence Res., 55, 361-387)的随机子空间嵌入技术的基础上,我们研究了一个通用的全局优化随机嵌入(REGO)框架,该框架与任何全局最小化算法兼容。而不是原来的,潜在的大规模优化问题,在REGO中,一个高斯随机的,低维的有界约束的问题被制定并在一个简化的空间中解决。我们为REGO成功解决原始的低有效维数问题提供了新的概率边界,这表明它与(潜在的大)环境维数的独立性以及与有效和嵌入子空间的维数的精确依赖。这些结果通过提供简化极小器及其欧几里得范数的精确分布以及问题所需的一般假设,显著改进了现有的理论分析。我们用三种类型的全局优化求解器对REGO进行了大量的数值测试,验证了我们的理论发现,说明了与各自求解器的全维应用相比,REGO的可扩展性得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A dimensionality reduction technique for unconstrained global optimization of functions with low effective dimensionality
We investigate the unconstrained global optimization of functions with low effective dimensionality, which are constant along certain (unknown) linear subspaces. Extending the technique of random subspace embeddings in Wang et al. (2016, J. Artificial Intelligence Res., 55, 361–387), we study a generic Random Embeddings for Global Optimization (REGO) framework that is compatible with any global minimization algorithm. Instead of the original, potentially large-scale optimization problem, within REGO, a Gaussian random, low-dimensional problem with bound constraints is formulated and solved in a reduced space. We provide novel probabilistic bounds for the success of REGO in solving the original, low effective-dimensionality problem, which show its independence of the (potentially large) ambient dimension and its precise dependence on the dimensions of the effective and embedding subspaces. These results significantly improve existing theoretical analyses by providing the exact distribution of a reduced minimizer and its Euclidean norm and by the general assumptions required on the problem. We validate our theoretical findings by extensive numerical testing of REGO with three types of global optimization solvers, illustrating the improved scalability of REGO compared with the full-dimensional application of the respective solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1