Xinyu He, Shuangchen Li, Yongpan Liu, X. Hu, Huazhong Yang
{"title":"在流应用中利用C-to-RTL合成中的电压频率岛","authors":"Xinyu He, Shuangchen Li, Yongpan Liu, X. Hu, Huazhong Yang","doi":"10.7873/DATE.2013.207","DOIUrl":null,"url":null,"abstract":"Automatic C-to-RTL (C2RTL) synthesis can greatly benefit hardware design for streaming applications. However, stringent through-put/area constraints, especially the demand for power optimization at the system level is rather challenging for existing C2RTL synthesis tools. This paper considers a power-aware C2RTL framework using voltage-frequency islands (VFIs) to address these challenges. Given the throughput, area, and power constraints, an MILP-based approach is introduced to synthesize C-code into an RTL design by simultaneously considering three design knobs, i.e., partition, parallelization, and VFI assignment to get the global optimal solution. A heuristic solution is also discussed to deal with the scalability challenge facing the MILP formulation. Experimental results based on four well known multimedia applications demonstrate the effectiveness of both solutions.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"15 1","pages":"992-995"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing voltage-frequency islands in C-to-RTL synthesis for streaming applications\",\"authors\":\"Xinyu He, Shuangchen Li, Yongpan Liu, X. Hu, Huazhong Yang\",\"doi\":\"10.7873/DATE.2013.207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic C-to-RTL (C2RTL) synthesis can greatly benefit hardware design for streaming applications. However, stringent through-put/area constraints, especially the demand for power optimization at the system level is rather challenging for existing C2RTL synthesis tools. This paper considers a power-aware C2RTL framework using voltage-frequency islands (VFIs) to address these challenges. Given the throughput, area, and power constraints, an MILP-based approach is introduced to synthesize C-code into an RTL design by simultaneously considering three design knobs, i.e., partition, parallelization, and VFI assignment to get the global optimal solution. A heuristic solution is also discussed to deal with the scalability challenge facing the MILP formulation. Experimental results based on four well known multimedia applications demonstrate the effectiveness of both solutions.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"15 1\",\"pages\":\"992-995\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utilizing voltage-frequency islands in C-to-RTL synthesis for streaming applications
Automatic C-to-RTL (C2RTL) synthesis can greatly benefit hardware design for streaming applications. However, stringent through-put/area constraints, especially the demand for power optimization at the system level is rather challenging for existing C2RTL synthesis tools. This paper considers a power-aware C2RTL framework using voltage-frequency islands (VFIs) to address these challenges. Given the throughput, area, and power constraints, an MILP-based approach is introduced to synthesize C-code into an RTL design by simultaneously considering three design knobs, i.e., partition, parallelization, and VFI assignment to get the global optimal solution. A heuristic solution is also discussed to deal with the scalability challenge facing the MILP formulation. Experimental results based on four well known multimedia applications demonstrate the effectiveness of both solutions.