使用神经算法改变电子游戏的图像风格

Byung-Hak Yoo, Kyung-Joong Kim
{"title":"使用神经算法改变电子游戏的图像风格","authors":"Byung-Hak Yoo, Kyung-Joong Kim","doi":"10.1109/CIG.2016.7860390","DOIUrl":null,"url":null,"abstract":"Recently, procedural content generation (PCG) has attracted positive attentions from gamers and applied for various content types such as maps, items and so on. Deep neural networks have been reported that they have potential to learn styles of artistic images. In this study, we propose to apply convolutional neural networks to change artistic styles of video game graphics. It's expected to change original games into different styles (modern, old-fashioned, scientific, and so on) given the input images. We applied the neural styling algorithm to the game images from Hedgewars, an open-source turn-based strategy game. Our results show that styles of video games can be changed from an input styling image.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"33 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Changing video game graphic styles using neural algorithms\",\"authors\":\"Byung-Hak Yoo, Kyung-Joong Kim\",\"doi\":\"10.1109/CIG.2016.7860390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, procedural content generation (PCG) has attracted positive attentions from gamers and applied for various content types such as maps, items and so on. Deep neural networks have been reported that they have potential to learn styles of artistic images. In this study, we propose to apply convolutional neural networks to change artistic styles of video game graphics. It's expected to change original games into different styles (modern, old-fashioned, scientific, and so on) given the input images. We applied the neural styling algorithm to the game images from Hedgewars, an open-source turn-based strategy game. Our results show that styles of video games can be changed from an input styling image.\",\"PeriodicalId\":6594,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"33 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2016.7860390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近,程序内容生成(procedural content generation, PCG)受到了玩家的积极关注,应用于地图、道具等多种内容类型。据报道,深度神经网络具有学习艺术图像风格的潜力。在本研究中,我们提出应用卷积神经网络来改变电子游戏图像的艺术风格。它有望根据输入图像将原始游戏转变为不同风格(现代,老式,科学等)。我们将神经样式算法应用于来自《Hedgewars》(一款开源回合制策略游戏)的游戏图像。我们的结果表明,视频游戏的风格可以从输入样式图像中改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Changing video game graphic styles using neural algorithms
Recently, procedural content generation (PCG) has attracted positive attentions from gamers and applied for various content types such as maps, items and so on. Deep neural networks have been reported that they have potential to learn styles of artistic images. In this study, we propose to apply convolutional neural networks to change artistic styles of video game graphics. It's expected to change original games into different styles (modern, old-fashioned, scientific, and so on) given the input images. We applied the neural styling algorithm to the game images from Hedgewars, an open-source turn-based strategy game. Our results show that styles of video games can be changed from an input styling image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human gesture classification by brute-force machine learning for exergaming in physiotherapy Evolving micro for 3D Real-Time Strategy games Constrained surprise search for content generation Design influence on player retention: A method based on time varying survival analysis Deep Q-learning using redundant outputs in visual doom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1