PySOFI:用于SOFI的开源Python包

IF 2.4 Q3 BIOPHYSICS Biophysical reports Pub Date : 2021-10-16 DOI:10.1101/2021.10.16.464651
Yuting Miao, S. Weiss, Xiyu Yi
{"title":"PySOFI:用于SOFI的开源Python包","authors":"Yuting Miao, S. Weiss, Xiyu Yi","doi":"10.1101/2021.10.16.464651","DOIUrl":null,"url":null,"abstract":"Super-resolution optical fluctuation imaging (SOFI) is a highly democratizable technique that provides optical super-resolution (SR) without requirement of sophisticated imaging instruments. An open source package for SOFI algorithm is needed to support not only the utilization of SOFI, but also the community adoption and participation for further development of SOFI. In this work, we developed PySOFI, an open source python package for SOFI analysis that offers the flexibility to inspect, test, modify, improve and extend the algorithm. We provide a complete documentation for the package and a collection of Jupyter Notebooks to demonstrate the usage of the package. We discuss the architecture of PySOFI, illustrate how to use each functional module, and demonstrate how to extend the PySOFI package with additional modules. We expect PySOFI to facilitate efficient adoption, testing, modification, dissemination and prototyping of new SOFI-relevant algorithms.","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":"43 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PySOFI: an open source Python package for SOFI\",\"authors\":\"Yuting Miao, S. Weiss, Xiyu Yi\",\"doi\":\"10.1101/2021.10.16.464651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Super-resolution optical fluctuation imaging (SOFI) is a highly democratizable technique that provides optical super-resolution (SR) without requirement of sophisticated imaging instruments. An open source package for SOFI algorithm is needed to support not only the utilization of SOFI, but also the community adoption and participation for further development of SOFI. In this work, we developed PySOFI, an open source python package for SOFI analysis that offers the flexibility to inspect, test, modify, improve and extend the algorithm. We provide a complete documentation for the package and a collection of Jupyter Notebooks to demonstrate the usage of the package. We discuss the architecture of PySOFI, illustrate how to use each functional module, and demonstrate how to extend the PySOFI package with additional modules. We expect PySOFI to facilitate efficient adoption, testing, modification, dissemination and prototyping of new SOFI-relevant algorithms.\",\"PeriodicalId\":72402,\"journal\":{\"name\":\"Biophysical reports\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2021.10.16.464651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.10.16.464651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

超分辨率光学波动成像(SOFI)是一种高度大众化的技术,它不需要复杂的成像仪器就能提供光学超分辨率(SR)。SOFI算法不仅需要一个开源包来支持SOFI的使用,还需要社区的采用和参与,以进一步发展SOFI。在这项工作中,我们开发了PySOFI,这是一个用于SOFI分析的开源python包,它提供了检查,测试,修改,改进和扩展算法的灵活性。我们为该包提供了完整的文档和Jupyter notebook集合,以演示该包的使用。我们将讨论PySOFI的体系结构,说明如何使用每个功能模块,并演示如何使用其他模块扩展PySOFI包。我们期望PySOFI能够促进新的sofi相关算法的有效采用、测试、修改、传播和原型设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PySOFI: an open source Python package for SOFI
Super-resolution optical fluctuation imaging (SOFI) is a highly democratizable technique that provides optical super-resolution (SR) without requirement of sophisticated imaging instruments. An open source package for SOFI algorithm is needed to support not only the utilization of SOFI, but also the community adoption and participation for further development of SOFI. In this work, we developed PySOFI, an open source python package for SOFI analysis that offers the flexibility to inspect, test, modify, improve and extend the algorithm. We provide a complete documentation for the package and a collection of Jupyter Notebooks to demonstrate the usage of the package. We discuss the architecture of PySOFI, illustrate how to use each functional module, and demonstrate how to extend the PySOFI package with additional modules. We expect PySOFI to facilitate efficient adoption, testing, modification, dissemination and prototyping of new SOFI-relevant algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
期刊最新文献
Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime. Correlating disordered activation domain ensembles with gene expression levels. DiffMAP-GP: Continuous 2D diffusion maps from particle trajectories without data binning using Gaussian processes. Growing bacterial colonies harness emergent genealogical demixing to regulate organizational entropy. An effective drift-diffusion model for pandemic propagation and uncertainty prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1