{"title":"在线神经形态生物医学波形分析","authors":"H. Kohen","doi":"10.1109/IEMBS.1995.575394","DOIUrl":null,"url":null,"abstract":"Addresses the real-time and on-line processing of clinical patient waveform patterns so as to improve critical-care maintenance in anesthesiology. The authors demonstrate that patient waveform pattern interpretation is achieved via a neuromorphic approach. This is primarily attributed to a neural networks ability to adaptively learn from examples. The authors utilized four distinct data sets (each containing a hundred patterns) encompassing patients vital clinical breathing patterns (i.e. hypocapnia, hypoventilation, and curare cleft) to train their network. Each pattern featured a base, ascending, plateau, and descending lines. The test and training data sets were obtained from actual strip-chart recordings. The Neuromorphic System (Neuro-Sys) was trained to correctly classify all of twenty-one unique clinical breathing patterns within a ten percent error-tolerance.","PeriodicalId":20509,"journal":{"name":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","volume":"92 1","pages":"849-850 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-line neuromorphic biomedical waveform analysis\",\"authors\":\"H. Kohen\",\"doi\":\"10.1109/IEMBS.1995.575394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addresses the real-time and on-line processing of clinical patient waveform patterns so as to improve critical-care maintenance in anesthesiology. The authors demonstrate that patient waveform pattern interpretation is achieved via a neuromorphic approach. This is primarily attributed to a neural networks ability to adaptively learn from examples. The authors utilized four distinct data sets (each containing a hundred patterns) encompassing patients vital clinical breathing patterns (i.e. hypocapnia, hypoventilation, and curare cleft) to train their network. Each pattern featured a base, ascending, plateau, and descending lines. The test and training data sets were obtained from actual strip-chart recordings. The Neuromorphic System (Neuro-Sys) was trained to correctly classify all of twenty-one unique clinical breathing patterns within a ten percent error-tolerance.\",\"PeriodicalId\":20509,\"journal\":{\"name\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"volume\":\"92 1\",\"pages\":\"849-850 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1995.575394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1995.575394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

解决临床病人波形模式的实时和在线处理,以提高麻醉重症监护的维护。作者证明,患者波形模式的解释是通过神经形态的方法实现的。这主要归因于神经网络从实例中自适应学习的能力。作者使用了四个不同的数据集(每个包含一百种模式),包括患者重要的临床呼吸模式(即低碳酸血症,低通气和曲裂)来训练他们的网络。每种图案都有底部、上升线、高原线和下降线。测试和训练数据集来自实际的条形图记录。神经形态系统(neurosys)经过训练,可以在10%的容错范围内正确分类所有21种独特的临床呼吸模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-line neuromorphic biomedical waveform analysis
Addresses the real-time and on-line processing of clinical patient waveform patterns so as to improve critical-care maintenance in anesthesiology. The authors demonstrate that patient waveform pattern interpretation is achieved via a neuromorphic approach. This is primarily attributed to a neural networks ability to adaptively learn from examples. The authors utilized four distinct data sets (each containing a hundred patterns) encompassing patients vital clinical breathing patterns (i.e. hypocapnia, hypoventilation, and curare cleft) to train their network. Each pattern featured a base, ascending, plateau, and descending lines. The test and training data sets were obtained from actual strip-chart recordings. The Neuromorphic System (Neuro-Sys) was trained to correctly classify all of twenty-one unique clinical breathing patterns within a ten percent error-tolerance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic seizure detection in newborns and infants Functional conditioning of skeletal muscle ventricles Electrical interactions between cardiac cells studied with "model clamp" An intelligent airway sensor system to increase safety in computer controlled mechanical ventilation A distributed health information network for consultative services in surgical pathology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1