Adil A. M. Omara, Abuelnuor A. A. Abuelnuor, A. A. Mohammed, Omer M. A. Sirelkhatim, Awab A. M. Suleman
{"title":"聚乙二醇(PEG) 600作为相变材料用于建筑热舒适和节能的实验研究","authors":"Adil A. M. Omara, Abuelnuor A. A. Abuelnuor, A. A. Mohammed, Omer M. A. Sirelkhatim, Awab A. M. Suleman","doi":"10.1109/ICCCEEE.2018.8515846","DOIUrl":null,"url":null,"abstract":"The building sector is one of the sectors where energy consumption has been expanding consistently to achieve 20–40% of the aggregate energy use in most countries. Thermal energy storage (TES) with phase change materials (PCM) is valuable technique for enhancing energy proficiency of a building by lessening the mismatch amongst supply and demand of heat or cold. This paper aims to investigate thermal comfort and energy saving in buildings by incorporating polyethylene glycol (PEG) 600 as phase change material with concrete. A concrete PCM system which is located in Khartoum, Sudan was used to study the thermal behavior of a building in response to outdoor environmental exposure. The concrete PCM ceiling system is consisted of two models; one with PCM and the other without PCM. The experimental analysis was done with and without present of fan in the concrete model with PCM. The results showed that the model with PCM could reduce the peak temperature with and without using fan by 4 °C and 1 °C respectively. The results additionally demonstrated that PCM could improve the storage of thermal mass of concrete about 6 times. The heat capacity and high density of concrete integrated with latent heat storage of PCM provides an energy saving concepts for sustainable built environment.","PeriodicalId":6567,"journal":{"name":"2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)","volume":"14 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An experimental study on using polyethylene glycol (PEG) 600 as phase change material for thermal comfort and energy saving in buildings\",\"authors\":\"Adil A. M. Omara, Abuelnuor A. A. Abuelnuor, A. A. Mohammed, Omer M. A. Sirelkhatim, Awab A. M. Suleman\",\"doi\":\"10.1109/ICCCEEE.2018.8515846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The building sector is one of the sectors where energy consumption has been expanding consistently to achieve 20–40% of the aggregate energy use in most countries. Thermal energy storage (TES) with phase change materials (PCM) is valuable technique for enhancing energy proficiency of a building by lessening the mismatch amongst supply and demand of heat or cold. This paper aims to investigate thermal comfort and energy saving in buildings by incorporating polyethylene glycol (PEG) 600 as phase change material with concrete. A concrete PCM system which is located in Khartoum, Sudan was used to study the thermal behavior of a building in response to outdoor environmental exposure. The concrete PCM ceiling system is consisted of two models; one with PCM and the other without PCM. The experimental analysis was done with and without present of fan in the concrete model with PCM. The results showed that the model with PCM could reduce the peak temperature with and without using fan by 4 °C and 1 °C respectively. The results additionally demonstrated that PCM could improve the storage of thermal mass of concrete about 6 times. The heat capacity and high density of concrete integrated with latent heat storage of PCM provides an energy saving concepts for sustainable built environment.\",\"PeriodicalId\":6567,\"journal\":{\"name\":\"2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)\",\"volume\":\"14 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCEEE.2018.8515846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCEEE.2018.8515846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An experimental study on using polyethylene glycol (PEG) 600 as phase change material for thermal comfort and energy saving in buildings
The building sector is one of the sectors where energy consumption has been expanding consistently to achieve 20–40% of the aggregate energy use in most countries. Thermal energy storage (TES) with phase change materials (PCM) is valuable technique for enhancing energy proficiency of a building by lessening the mismatch amongst supply and demand of heat or cold. This paper aims to investigate thermal comfort and energy saving in buildings by incorporating polyethylene glycol (PEG) 600 as phase change material with concrete. A concrete PCM system which is located in Khartoum, Sudan was used to study the thermal behavior of a building in response to outdoor environmental exposure. The concrete PCM ceiling system is consisted of two models; one with PCM and the other without PCM. The experimental analysis was done with and without present of fan in the concrete model with PCM. The results showed that the model with PCM could reduce the peak temperature with and without using fan by 4 °C and 1 °C respectively. The results additionally demonstrated that PCM could improve the storage of thermal mass of concrete about 6 times. The heat capacity and high density of concrete integrated with latent heat storage of PCM provides an energy saving concepts for sustainable built environment.