{"title":"基于脉冲注入的永磁同步电机无传感器动态电流响应改进控制方法","authors":"Hechao Wang, K. Lu, Dong Wang, F. Blaabjerg","doi":"10.23919/IPEC.2018.8507823","DOIUrl":null,"url":null,"abstract":"Sensorless control methods based on pulse injection are widely used in the standstill to low speed machine operation range. Generally, to achieve pulse-injection-based position estimation one or more switching periods for injection are dedicatedly needed, which results in reduced equivalent switching frequency, and consequently poor dynamic current response. In this paper, an improved pulse-injection-based method is proposed for sensorless drives of Permanent Magnet Synchronous Machine (PMSM) operating at standstill to low speed range. The proposed method can effectively increase the current dynamic response without increasing the control complexity. Meanwhile the current ripple could be reduced leading to lower torque ripple and acoustic noise. Experimental results are presented to validate the improved performance of the proposed sensorless method.","PeriodicalId":6610,"journal":{"name":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","volume":"101 1","pages":"1183-1188"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pulse-Injection-Based Sensorless Control Method with Improved Dynamic Current Response for PMSM\",\"authors\":\"Hechao Wang, K. Lu, Dong Wang, F. Blaabjerg\",\"doi\":\"10.23919/IPEC.2018.8507823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensorless control methods based on pulse injection are widely used in the standstill to low speed machine operation range. Generally, to achieve pulse-injection-based position estimation one or more switching periods for injection are dedicatedly needed, which results in reduced equivalent switching frequency, and consequently poor dynamic current response. In this paper, an improved pulse-injection-based method is proposed for sensorless drives of Permanent Magnet Synchronous Machine (PMSM) operating at standstill to low speed range. The proposed method can effectively increase the current dynamic response without increasing the control complexity. Meanwhile the current ripple could be reduced leading to lower torque ripple and acoustic noise. Experimental results are presented to validate the improved performance of the proposed sensorless method.\",\"PeriodicalId\":6610,\"journal\":{\"name\":\"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)\",\"volume\":\"101 1\",\"pages\":\"1183-1188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IPEC.2018.8507823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IPEC.2018.8507823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pulse-Injection-Based Sensorless Control Method with Improved Dynamic Current Response for PMSM
Sensorless control methods based on pulse injection are widely used in the standstill to low speed machine operation range. Generally, to achieve pulse-injection-based position estimation one or more switching periods for injection are dedicatedly needed, which results in reduced equivalent switching frequency, and consequently poor dynamic current response. In this paper, an improved pulse-injection-based method is proposed for sensorless drives of Permanent Magnet Synchronous Machine (PMSM) operating at standstill to low speed range. The proposed method can effectively increase the current dynamic response without increasing the control complexity. Meanwhile the current ripple could be reduced leading to lower torque ripple and acoustic noise. Experimental results are presented to validate the improved performance of the proposed sensorless method.