通过联邦学习实现超越5g的边缘智能

Shashank Jere, Y. Yi
{"title":"通过联邦学习实现超越5g的边缘智能","authors":"Shashank Jere, Y. Yi","doi":"10.1145/3453142.3493519","DOIUrl":null,"url":null,"abstract":"The computational capabilities of mobile devices have been advancing at a rapid pace in recent times, leading to a growing interest in deploying machine learning applications on such devices. In parallel, Mobile Edge Computing (MEC) has gained traction as a potential enabler for many applications in 5G and Beyond-5G networks, paving the path for making edge devices more intelligent through distributed learning strategies. In this article, we overview the application of federated learning (FL), a novel privacy-preserving distributed learning strategy, within the context of MEC. Minimizing communications latency involved in FL tasks as well as optimizing FL tasks for resource-constrained Internet of Things (IoT) devices are investigated.","PeriodicalId":6779,"journal":{"name":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"130 1","pages":"345-349"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Edge Intelligence for Beyond-5G through Federated Learning\",\"authors\":\"Shashank Jere, Y. Yi\",\"doi\":\"10.1145/3453142.3493519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computational capabilities of mobile devices have been advancing at a rapid pace in recent times, leading to a growing interest in deploying machine learning applications on such devices. In parallel, Mobile Edge Computing (MEC) has gained traction as a potential enabler for many applications in 5G and Beyond-5G networks, paving the path for making edge devices more intelligent through distributed learning strategies. In this article, we overview the application of federated learning (FL), a novel privacy-preserving distributed learning strategy, within the context of MEC. Minimizing communications latency involved in FL tasks as well as optimizing FL tasks for resource-constrained Internet of Things (IoT) devices are investigated.\",\"PeriodicalId\":6779,\"journal\":{\"name\":\"2021 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"130 1\",\"pages\":\"345-349\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453142.3493519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453142.3493519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,移动设备的计算能力一直在快速发展,导致人们对在此类设备上部署机器学习应用程序的兴趣日益浓厚。与此同时,移动边缘计算(MEC)作为5G和超5G网络中许多应用的潜在推动者,已经获得了牵引力,为通过分布式学习策略使边缘设备更加智能铺平了道路。在本文中,我们概述了联邦学习(FL)在MEC背景下的应用,这是一种新颖的保护隐私的分布式学习策略。研究了最小化FL任务中涉及的通信延迟以及优化资源受限的物联网(IoT)设备的FL任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Edge Intelligence for Beyond-5G through Federated Learning
The computational capabilities of mobile devices have been advancing at a rapid pace in recent times, leading to a growing interest in deploying machine learning applications on such devices. In parallel, Mobile Edge Computing (MEC) has gained traction as a potential enabler for many applications in 5G and Beyond-5G networks, paving the path for making edge devices more intelligent through distributed learning strategies. In this article, we overview the application of federated learning (FL), a novel privacy-preserving distributed learning strategy, within the context of MEC. Minimizing communications latency involved in FL tasks as well as optimizing FL tasks for resource-constrained Internet of Things (IoT) devices are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Driven Optimal Control Decision-Making System for Multiple Autonomous Vehicles The Performance Argument for Blockchain-based Edge DNS Caching LotteryFL: Empower Edge Intelligence with Personalized and Communication-Efficient Federated Learning Collaborative Cloud-Edge-Local Computation Offloading for Multi-Component Applications Poster: Enabling Flexible Edge-assisted XR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1