酸碱活化天然沸石催化剂催化橡胶籽油合成生物柴油

Tiamina Nasution, Akhir Mauludin Pulungan, Yuli Asih Wiliranti, J. Sihombing, A. Pulungan
{"title":"酸碱活化天然沸石催化剂催化橡胶籽油合成生物柴油","authors":"Tiamina Nasution, Akhir Mauludin Pulungan, Yuli Asih Wiliranti, J. Sihombing, A. Pulungan","doi":"10.24114/ijcst.v2i2.14001","DOIUrl":null,"url":null,"abstract":" In this study, biodiesel synthesis was carried out using Z-AH and Z-OH Zeolite catalysts to obtain a cheaper and environmentally friendly process. The catalysts were prepared from Sarulla Indonesian natural zeolite       (Z-AS) through a chemical activation process with certain HCl 3 M and NaOH 2 M, then calcined at 500°C with Nitrogen gas for 4 hours to obtain Z-AH ang Z-OH catalyst. The catalysts were characterized by FT-IR and XRD. The conversion of rubber seed oil into biodiesel was carried out at temperature of 30 oC, 60 oC and 90 oC. The ratio of methanol: rubber seed oil is 6: 1 (v / v) and the catalyst concentration used is 1% wt. The XRD and FTIR data show that Z-AS activation increases the crystallinity of zeolite and does not damage the zeolite skeletal structure.The Z-AH catalyst has a better catalytic activity than the Z-OH catalyst with the conversion value of the biodiesel product obtained at 69.79%.","PeriodicalId":13519,"journal":{"name":"Indonesian Journal of Chemical Science and Technology (IJCST)","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis of Biodiesel From Rubber Seed Oil with Acid and Base Activated Natural Zeolite Catalyst\",\"authors\":\"Tiamina Nasution, Akhir Mauludin Pulungan, Yuli Asih Wiliranti, J. Sihombing, A. Pulungan\",\"doi\":\"10.24114/ijcst.v2i2.14001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" In this study, biodiesel synthesis was carried out using Z-AH and Z-OH Zeolite catalysts to obtain a cheaper and environmentally friendly process. The catalysts were prepared from Sarulla Indonesian natural zeolite       (Z-AS) through a chemical activation process with certain HCl 3 M and NaOH 2 M, then calcined at 500°C with Nitrogen gas for 4 hours to obtain Z-AH ang Z-OH catalyst. The catalysts were characterized by FT-IR and XRD. The conversion of rubber seed oil into biodiesel was carried out at temperature of 30 oC, 60 oC and 90 oC. The ratio of methanol: rubber seed oil is 6: 1 (v / v) and the catalyst concentration used is 1% wt. The XRD and FTIR data show that Z-AS activation increases the crystallinity of zeolite and does not damage the zeolite skeletal structure.The Z-AH catalyst has a better catalytic activity than the Z-OH catalyst with the conversion value of the biodiesel product obtained at 69.79%.\",\"PeriodicalId\":13519,\"journal\":{\"name\":\"Indonesian Journal of Chemical Science and Technology (IJCST)\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemical Science and Technology (IJCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24114/ijcst.v2i2.14001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemical Science and Technology (IJCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/ijcst.v2i2.14001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本研究中,采用Z-AH和Z-OH沸石催化剂进行生物柴油的合成,以获得更便宜和环保的工艺。以印尼Sarulla天然沸石(Z-AS)为原料,用一定量的HCl 3 M和NaOH 2 M进行化学活化,然后在500℃下用氮气煅烧4 h,得到Z-AH和Z-OH催化剂。采用FT-IR和XRD对催化剂进行了表征。橡胶籽油在30℃、60℃和90℃的温度下转化为生物柴油。甲醇与橡胶籽油的比例为6:1 (v / v),催化剂浓度为1% wt。XRD和FTIR数据表明,活化Z-AS提高了沸石的结晶度,且不破坏沸石的骨架结构。Z-AH催化剂的催化活性优于Z-OH催化剂,生物柴油产品的转化率为69.79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of Biodiesel From Rubber Seed Oil with Acid and Base Activated Natural Zeolite Catalyst
 In this study, biodiesel synthesis was carried out using Z-AH and Z-OH Zeolite catalysts to obtain a cheaper and environmentally friendly process. The catalysts were prepared from Sarulla Indonesian natural zeolite       (Z-AS) through a chemical activation process with certain HCl 3 M and NaOH 2 M, then calcined at 500°C with Nitrogen gas for 4 hours to obtain Z-AH ang Z-OH catalyst. The catalysts were characterized by FT-IR and XRD. The conversion of rubber seed oil into biodiesel was carried out at temperature of 30 oC, 60 oC and 90 oC. The ratio of methanol: rubber seed oil is 6: 1 (v / v) and the catalyst concentration used is 1% wt. The XRD and FTIR data show that Z-AS activation increases the crystallinity of zeolite and does not damage the zeolite skeletal structure.The Z-AH catalyst has a better catalytic activity than the Z-OH catalyst with the conversion value of the biodiesel product obtained at 69.79%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formulation and Physical Stability Test of Shampoo Preparation Combination of Ethanol Extract of Jackfruit Leaves (Artocarpus heterophyllus) and Pandan Leaves (Pandanus Amaryllifolius) with Varying Carbomer Concentrations Synthesis and Characterization of Activated Carbon/Alginate-Fe Composites as Slow Release Fertilizer Formulation dan Phyical Stability Test Of Turi Leaf Extract (Sesbania grandiflora L.) Silver Nanoparticle Soap Adsorption Properties of Beta Carotene from Activated Carbon Derivatives of Oil Palm Empty Bunches Physical Characteristics And Phytochemical Screeningfrom Oil And Red Fruit Juice (Pandanus Conoideus L.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1