DCE-CT信号拟合误差对灌注参数的影响分析

A. Bevilacqua, M. Mottola
{"title":"DCE-CT信号拟合误差对灌注参数的影响分析","authors":"A. Bevilacqua, M. Mottola","doi":"10.1109/ISCAS.2018.8351204","DOIUrl":null,"url":null,"abstract":"Computed Tomography perfusion (CTp) is a promising technique for estimating perfusion parameters, by analysing Time Concentration Curves (TCCs) of the administered contrast agent. However, several artefacts can degrade the signal quality, jeopardizing quantitative measurements. Despite different methods exploit TCCs to compute perfusion parameters, none of them has investigated how TCC fitting errors may affect final perfusion values. The first goal of this work is to investigate residuals distributions in significant signal's portions, then relating them to Blood Flow (BF). The Gamma Variate (GV) function is addressed to fit TCCs. Voxel-based BF is computed with the two most spread methods in literature, Maximum Slope (MS) and Deconvolution (DV). Experimental results prove that residuals coming from a Gaussian distribution yield percent errors maps locally smooth, thus attaining residuals-independent BF values. Besides results, the methodological approach can be spent in future researches in order to encourage CTp reproducibility.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"4 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of the effects of fitting errors of DCE-CT signals on perfusion parameters\",\"authors\":\"A. Bevilacqua, M. Mottola\",\"doi\":\"10.1109/ISCAS.2018.8351204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computed Tomography perfusion (CTp) is a promising technique for estimating perfusion parameters, by analysing Time Concentration Curves (TCCs) of the administered contrast agent. However, several artefacts can degrade the signal quality, jeopardizing quantitative measurements. Despite different methods exploit TCCs to compute perfusion parameters, none of them has investigated how TCC fitting errors may affect final perfusion values. The first goal of this work is to investigate residuals distributions in significant signal's portions, then relating them to Blood Flow (BF). The Gamma Variate (GV) function is addressed to fit TCCs. Voxel-based BF is computed with the two most spread methods in literature, Maximum Slope (MS) and Deconvolution (DV). Experimental results prove that residuals coming from a Gaussian distribution yield percent errors maps locally smooth, thus attaining residuals-independent BF values. Besides results, the methodological approach can be spent in future researches in order to encourage CTp reproducibility.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"4 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

计算机断层扫描灌注(CTp)是一种很有前途的技术,通过分析给药造影剂的时间浓度曲线(tcc)来估计灌注参数。然而,一些伪影会降低信号质量,危及定量测量。尽管不同的方法利用TCC计算灌注参数,但都没有研究TCC拟合误差如何影响最终的灌注值。本工作的第一个目标是研究显著信号部分的残差分布,然后将它们与血流(BF)联系起来。伽马变量(GV)函数用于拟合tcc。基于体素的BF计算采用了两种文献中应用最广泛的方法:最大斜率法(MS)和反褶积法(DV)。实验结果表明,来自高斯分布的残差使误差百分比映射局部平滑,从而获得与残差无关的BF值。除了结果,方法学方法可以用于未来的研究,以提高CTp的可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the effects of fitting errors of DCE-CT signals on perfusion parameters
Computed Tomography perfusion (CTp) is a promising technique for estimating perfusion parameters, by analysing Time Concentration Curves (TCCs) of the administered contrast agent. However, several artefacts can degrade the signal quality, jeopardizing quantitative measurements. Despite different methods exploit TCCs to compute perfusion parameters, none of them has investigated how TCC fitting errors may affect final perfusion values. The first goal of this work is to investigate residuals distributions in significant signal's portions, then relating them to Blood Flow (BF). The Gamma Variate (GV) function is addressed to fit TCCs. Voxel-based BF is computed with the two most spread methods in literature, Maximum Slope (MS) and Deconvolution (DV). Experimental results prove that residuals coming from a Gaussian distribution yield percent errors maps locally smooth, thus attaining residuals-independent BF values. Besides results, the methodological approach can be spent in future researches in order to encourage CTp reproducibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Low Power Wide-Dynamic-Range Universal Interface for Capacitive and Resistive Sensors An Energy-Efficient 13-bit Zero-Crossing ΔΣ Capacitance-to-Digital Converter with 1 pF-to-10 nF Sensing Range Power Optimized Comparator Selecting Method For Stochastic ADC Brain-inspired recurrent neural network with plastic RRAM synapses On the Use of Approximate Multipliers in LMS Adaptive Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1