太阳能制冷技术的火用分析综述

P. A. N. Wouagfack, Maurice Tenkeng, D. Lissouck, R. Tchinda
{"title":"太阳能制冷技术的火用分析综述","authors":"P. A. N. Wouagfack, Maurice Tenkeng, D. Lissouck, R. Tchinda","doi":"10.11648/J.IE.20200402.11","DOIUrl":null,"url":null,"abstract":"Solar energy is becoming more and more useful in the modern day life in industrial, domestic and commercial sectors, because of his cleanliness from an environmental point of view and also contributes to the reduction of greenhouse effect gases such as CO2. Exergy analysis is a thermodynamic analysis technique based on the Second Law of Thermodynamics, which provides an alternative and illuminating means of assessing and comparing processes and systems rationally and meaningfully. Exergy analysis can assist in improving and optimizing designs. In this paper, the exergy analysis of solar thermal refrigeration cyles is reviewed. A review of the research state of art of the solar absorption and adsorption refrigeration technologies is also carried out. The cycles involved in these technologies are: open, closed, continuous and intermittent cycles. An overview of mesures of merit with regard to exergy (exergetic efficiency, exergy losses, exergy improvement and exergetic coefficient of performance) is presented. Besides, an historical and chronological view is done on the development scenario of exergy analysis in the world from 1824 until 2014. The main mathematical relations for the simulation of those cycles are presented.","PeriodicalId":54988,"journal":{"name":"Industrial Engineer","volume":"1 1","pages":"14"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Review on Exergy Analysis of Solar Refrigeration Technologies\",\"authors\":\"P. A. N. Wouagfack, Maurice Tenkeng, D. Lissouck, R. Tchinda\",\"doi\":\"10.11648/J.IE.20200402.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar energy is becoming more and more useful in the modern day life in industrial, domestic and commercial sectors, because of his cleanliness from an environmental point of view and also contributes to the reduction of greenhouse effect gases such as CO2. Exergy analysis is a thermodynamic analysis technique based on the Second Law of Thermodynamics, which provides an alternative and illuminating means of assessing and comparing processes and systems rationally and meaningfully. Exergy analysis can assist in improving and optimizing designs. In this paper, the exergy analysis of solar thermal refrigeration cyles is reviewed. A review of the research state of art of the solar absorption and adsorption refrigeration technologies is also carried out. The cycles involved in these technologies are: open, closed, continuous and intermittent cycles. An overview of mesures of merit with regard to exergy (exergetic efficiency, exergy losses, exergy improvement and exergetic coefficient of performance) is presented. Besides, an historical and chronological view is done on the development scenario of exergy analysis in the world from 1824 until 2014. The main mathematical relations for the simulation of those cycles are presented.\",\"PeriodicalId\":54988,\"journal\":{\"name\":\"Industrial Engineer\",\"volume\":\"1 1\",\"pages\":\"14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Engineer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IE.20200402.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Engineer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IE.20200402.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

太阳能在工业、家庭和商业部门的现代生活中变得越来越有用,因为它从环境的角度来看是清洁的,也有助于减少温室效应气体,如二氧化碳。火用分析是一种基于热力学第二定律的热力学分析技术,它为合理、有意义地评价和比较过程和系统提供了一种替代的、有启发性的方法。火用分析可以帮助改进和优化设计。本文综述了太阳能热制冷循环的火用分析。对太阳能吸收式和吸附式制冷技术的研究现状进行了综述。这些技术所涉及的循环有:开放循环、封闭循环、连续循环和间歇循环。概述了关于火用(火用效率、火用损失、火用改善和火用性能系数)的优点度量。此外,对1824年至2014年世界能源分析的发展情景进行了历史和时间顺序的分析。给出了这些循环模拟的主要数学关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review on Exergy Analysis of Solar Refrigeration Technologies
Solar energy is becoming more and more useful in the modern day life in industrial, domestic and commercial sectors, because of his cleanliness from an environmental point of view and also contributes to the reduction of greenhouse effect gases such as CO2. Exergy analysis is a thermodynamic analysis technique based on the Second Law of Thermodynamics, which provides an alternative and illuminating means of assessing and comparing processes and systems rationally and meaningfully. Exergy analysis can assist in improving and optimizing designs. In this paper, the exergy analysis of solar thermal refrigeration cyles is reviewed. A review of the research state of art of the solar absorption and adsorption refrigeration technologies is also carried out. The cycles involved in these technologies are: open, closed, continuous and intermittent cycles. An overview of mesures of merit with regard to exergy (exergetic efficiency, exergy losses, exergy improvement and exergetic coefficient of performance) is presented. Besides, an historical and chronological view is done on the development scenario of exergy analysis in the world from 1824 until 2014. The main mathematical relations for the simulation of those cycles are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Strong Government in Attaining Outstanding Performance on Construction Projects: Stakeholder’s Opinions in Tanzania Experimental Research of the Influence of Bedload Sediment Heterogeneity on Length, Height and Shifting Velocity of Growing Bed Configuration Effect of SBF on Cyclic Compression Behaviour of Porous Titanium Component for Implant Application A Review on Exergy Analysis of Solar Refrigeration Technologies Effect of Irrigation Methods and Irrigation Levels on Yield and Water Productivity of Onion at Awash Melkasa, Ethiopia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1