纳米氧化铁在卷烟中同时去除主流烟气中CO和NO的应用

P. Li, F. Rasouli, M. Hajaligol
{"title":"纳米氧化铁在卷烟中同时去除主流烟气中CO和NO的应用","authors":"P. Li, F. Rasouli, M. Hajaligol","doi":"10.2478/CTTR-2013-0765","DOIUrl":null,"url":null,"abstract":"Abstract Based on the unique temperature and oxygen profiles in a burning cigarette, a novel approach is proposed in this paper to use a single oxidant/catalyst in the cigarette filler for simultaneous removal of carbon monoxide (CO) and nitric oxide (NO) in mainstream smoke. A nanoparticle iron oxide is identified as a very active material for this application due to its multiple functions as a CO catalyst, as a CO oxidant, and in its reduced forms as a NO catalyst. The multiple functions of the nanoparticle iron oxide are characterized in a flow tube reactor and the working mechanisms of these multiple functions for CO and NO removal in a burning cigarette are explained. The effect of smoke condensate on the catalyst are examined and discussed. The advantage of in situ generation of the catalyst during the cigarette burning process is illustrated. The test results of nanoparticle iron oxide for CO and NO removal in cigarettes are presented.","PeriodicalId":10723,"journal":{"name":"Contributions to Tobacco & Nicotine Research","volume":"146 1","pages":"1 - 8"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Application of Nanoparticle Iron Oxide in Cigarette for Simultaneous CO and NO Removal in the Mainstream Smoke\",\"authors\":\"P. Li, F. Rasouli, M. Hajaligol\",\"doi\":\"10.2478/CTTR-2013-0765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Based on the unique temperature and oxygen profiles in a burning cigarette, a novel approach is proposed in this paper to use a single oxidant/catalyst in the cigarette filler for simultaneous removal of carbon monoxide (CO) and nitric oxide (NO) in mainstream smoke. A nanoparticle iron oxide is identified as a very active material for this application due to its multiple functions as a CO catalyst, as a CO oxidant, and in its reduced forms as a NO catalyst. The multiple functions of the nanoparticle iron oxide are characterized in a flow tube reactor and the working mechanisms of these multiple functions for CO and NO removal in a burning cigarette are explained. The effect of smoke condensate on the catalyst are examined and discussed. The advantage of in situ generation of the catalyst during the cigarette burning process is illustrated. The test results of nanoparticle iron oxide for CO and NO removal in cigarettes are presented.\",\"PeriodicalId\":10723,\"journal\":{\"name\":\"Contributions to Tobacco & Nicotine Research\",\"volume\":\"146 1\",\"pages\":\"1 - 8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Tobacco & Nicotine Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/CTTR-2013-0765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Tobacco & Nicotine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/CTTR-2013-0765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

摘要基于卷烟燃烧过程中独特的温度和氧分布特征,提出了在卷烟填料中使用单一氧化剂/催化剂同时去除主流烟气中一氧化碳(CO)和一氧化氮(NO)的新方法。纳米氧化铁被认为是一种非常活跃的材料,因为它具有多种功能,既可以作为CO催化剂,也可以作为CO氧化剂,还可以作为NO催化剂。在流动管反应器中对纳米氧化铁的多种功能进行了表征,并解释了这些多种功能在燃烧卷烟中去除CO和NO的工作机理。考察和讨论了烟气冷凝物对催化剂的影响。说明了在卷烟燃烧过程中原位生成催化剂的优点。介绍了纳米氧化铁去除卷烟中CO和NO的试验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Nanoparticle Iron Oxide in Cigarette for Simultaneous CO and NO Removal in the Mainstream Smoke
Abstract Based on the unique temperature and oxygen profiles in a burning cigarette, a novel approach is proposed in this paper to use a single oxidant/catalyst in the cigarette filler for simultaneous removal of carbon monoxide (CO) and nitric oxide (NO) in mainstream smoke. A nanoparticle iron oxide is identified as a very active material for this application due to its multiple functions as a CO catalyst, as a CO oxidant, and in its reduced forms as a NO catalyst. The multiple functions of the nanoparticle iron oxide are characterized in a flow tube reactor and the working mechanisms of these multiple functions for CO and NO removal in a burning cigarette are explained. The effect of smoke condensate on the catalyst are examined and discussed. The advantage of in situ generation of the catalyst during the cigarette burning process is illustrated. The test results of nanoparticle iron oxide for CO and NO removal in cigarettes are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparative In Vitro Toxicological Screening of a Closed-End Heated Tobacco Product * Plasma Nicotine Pharmacokinetics of Oral Nicotine Pouches Across Varying Flavours and Nicotine Content * A Pumping Method for Assessing Airtightness of Packs - Application to Heated Tobacco Products * Purchase Intent and Product Appeal of Velo Nicotine Pouches Among Current Tobacco Users and Nonusers of Tobacco How do Risk Perceptions Drive Smokers to Completely Switch to a Smoke-Free Tobacco Product (IQOS™)? A Four-Country Cohort Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1