{"title":"具有颜色共现直方图的物体识别","authors":"Peng Chang, J. Krumm","doi":"10.1109/CVPR.1999.784727","DOIUrl":null,"url":null,"abstract":"We use the color cooccurrence histogram (CH) for recognizing objects in images. The color CH keeps track of the number of pairs of certain colored pixels that occur at certain separation distances in image space. The color CH adds geometric information to the normal color histogram, which abstracts away all geometry. We compute model CHs based on images of known objects taken from different points of view. These model CHs are then matched to subregions in test images to find the object. By adjusting the number of colors and the number of distances used in the CH, we can adjust the tolerance of the algorithm to changes in lighting, viewpoint, and the flexibility of the object We develop a mathematical model of the algorithm's false alarm probability and use this as a principled way of picking most of the algorithm's adjustable parameters. We demonstrate our algorithm on different objects, showing that it recognizes objects in spite of confusing background clutter partial occlusions, and flexing of the object.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"47 1","pages":"498-504 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"226","resultStr":"{\"title\":\"Object recognition with color cooccurrence histograms\",\"authors\":\"Peng Chang, J. Krumm\",\"doi\":\"10.1109/CVPR.1999.784727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the color cooccurrence histogram (CH) for recognizing objects in images. The color CH keeps track of the number of pairs of certain colored pixels that occur at certain separation distances in image space. The color CH adds geometric information to the normal color histogram, which abstracts away all geometry. We compute model CHs based on images of known objects taken from different points of view. These model CHs are then matched to subregions in test images to find the object. By adjusting the number of colors and the number of distances used in the CH, we can adjust the tolerance of the algorithm to changes in lighting, viewpoint, and the flexibility of the object We develop a mathematical model of the algorithm's false alarm probability and use this as a principled way of picking most of the algorithm's adjustable parameters. We demonstrate our algorithm on different objects, showing that it recognizes objects in spite of confusing background clutter partial occlusions, and flexing of the object.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"47 1\",\"pages\":\"498-504 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"226\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 226

摘要

我们使用颜色共现直方图(CH)来识别图像中的物体。颜色CH跟踪在图像空间中某些分离距离上出现的某些彩色像素对的数量。颜色CH将几何信息添加到正常的颜色直方图中,抽象掉所有的几何信息。我们根据从不同角度拍摄的已知物体的图像计算模型CHs。然后将这些模型CHs与测试图像中的子区域进行匹配以找到目标。通过调整CH中使用的颜色数量和距离数量,我们可以调整算法对照明,视点和对象灵活性变化的容忍度。我们开发了算法虚警概率的数学模型,并将其用作选择大多数算法可调参数的原则方法。我们在不同的对象上演示了我们的算法,表明它可以在令人困惑的背景杂波、部分遮挡和对象弯曲的情况下识别目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object recognition with color cooccurrence histograms
We use the color cooccurrence histogram (CH) for recognizing objects in images. The color CH keeps track of the number of pairs of certain colored pixels that occur at certain separation distances in image space. The color CH adds geometric information to the normal color histogram, which abstracts away all geometry. We compute model CHs based on images of known objects taken from different points of view. These model CHs are then matched to subregions in test images to find the object. By adjusting the number of colors and the number of distances used in the CH, we can adjust the tolerance of the algorithm to changes in lighting, viewpoint, and the flexibility of the object We develop a mathematical model of the algorithm's false alarm probability and use this as a principled way of picking most of the algorithm's adjustable parameters. We demonstrate our algorithm on different objects, showing that it recognizes objects in spite of confusing background clutter partial occlusions, and flexing of the object.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1