多目标跟踪中绑定目标识别和定位的皮质回路

L. Nummenmaa, Lauri Oksama, E. Glerean, J. Hyönä
{"title":"多目标跟踪中绑定目标识别和定位的皮质回路","authors":"L. Nummenmaa, Lauri Oksama, E. Glerean, J. Hyönä","doi":"10.1093/cercor/bhw380","DOIUrl":null,"url":null,"abstract":"Abstract Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity‐location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants’ hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple‐object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity‐location binding during attentive tracking.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"25 1","pages":"162 - 172"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking\",\"authors\":\"L. Nummenmaa, Lauri Oksama, E. Glerean, J. Hyönä\",\"doi\":\"10.1093/cercor/bhw380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity‐location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants’ hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple‐object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity‐location binding during attentive tracking.\",\"PeriodicalId\":9825,\"journal\":{\"name\":\"Cerebral Cortex (New York, NY)\",\"volume\":\"25 1\",\"pages\":\"162 - 172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral Cortex (New York, NY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/cercor/bhw380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral Cortex (New York, NY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/cercor/bhw380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

运动目标的持续多焦点关注需要将目标身份与其位置相结合。在注意跟踪过程中,身份-位置绑定的大脑机制仍未得到解决。在2个功能性磁共振成像实验中,我们测量了参与者在注意跟踪多个物体时的血流动力学活动,这些物体具有等效(多物体跟踪)和不同(多重身份跟踪,MIT)身份。任务负荷被参数化处理。这两项任务都激活了大量的额顶叶回路。MIT显著增加了负责物体识别和工作记忆的额顶叶和颞叶系统的活动。当眼睛运动被禁止时,这些效果也被复制了。麻省理工学院与颞外侧、额叶和顶叶区域之间的功能连接显著增加有关。我们提出,该网络的协调活动有助于在密切跟踪期间实现身份-位置绑定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking
Abstract Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity‐location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants’ hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple‐object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity‐location binding during attentive tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consistently increased dorsolateral prefrontal cortex activity during the exposure to acute stressors Conditioning and pseudoconditioning differently change intrinsic excitability of inhibitory interneurons in the neocortex Phonological properties of logographic words modulate brain activation in bilinguals: a comparative study of Chinese characters and Japanese Kanji Inferior parietal cortex represents relational structures for explicit transitive inference In vivo ephaptic coupling allows memory network formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1