含有牛至精油纳米乳液的可食用涂层与脉冲光处理相结合提高番茄的保质期

Q3 Chemical Engineering Chemical engineering transactions Pub Date : 2021-07-01 DOI:10.3303/CET2187011
A. Pirozzi, Vittoria Del Grosso, G. Ferrari, G. Pataro, F. Donsì
{"title":"含有牛至精油纳米乳液的可食用涂层与脉冲光处理相结合提高番茄的保质期","authors":"A. Pirozzi, Vittoria Del Grosso, G. Ferrari, G. Pataro, F. Donsì","doi":"10.3303/CET2187011","DOIUrl":null,"url":null,"abstract":"Edible coatings (ECs) have attracted increasing attention in the last years as a simple yet effective approach to increase the storability of perishable foods, such as fresh or fresh-cut fruits and vegetables, contributing to maintaining their quality by reducing respiration rate and water loss. The incorporation of antimicrobial agents, such as essential oils, was reported to add also antimicrobial properties to the coatings, through the controlled release of the antimicrobial compounds on the food surface, contributing to further reduce microbial growth over extended periods of storage. Pulsed light (PL) treatments have been widely investigated as non-thermal processes for superficial decontamination of food and food-contact surfaces, because of their ability to cause, through a short exposition, a significant reduction in the microbial population. Therefore, the combination of ECs and PL treatments represents a promising hurdle approach in food preservation, for extending the shelf life of fresh products. ECs in combination with optimum PL treatment condition (4 J/cm2) improved the quality of tomato fruits in terms of reducing the growth of the endogenous flora, as well as of preserving the quality attributes (pH, total soluble solids, and color) over a 15-d storage at room temperature.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"25 1","pages":"61-66"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Combination of Edible Coatings Containing Oregano Essential Oil Nanoemulsion and Pulsed Light Treatments for Improving the Shelf Life of Tomatoes\",\"authors\":\"A. Pirozzi, Vittoria Del Grosso, G. Ferrari, G. Pataro, F. Donsì\",\"doi\":\"10.3303/CET2187011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edible coatings (ECs) have attracted increasing attention in the last years as a simple yet effective approach to increase the storability of perishable foods, such as fresh or fresh-cut fruits and vegetables, contributing to maintaining their quality by reducing respiration rate and water loss. The incorporation of antimicrobial agents, such as essential oils, was reported to add also antimicrobial properties to the coatings, through the controlled release of the antimicrobial compounds on the food surface, contributing to further reduce microbial growth over extended periods of storage. Pulsed light (PL) treatments have been widely investigated as non-thermal processes for superficial decontamination of food and food-contact surfaces, because of their ability to cause, through a short exposition, a significant reduction in the microbial population. Therefore, the combination of ECs and PL treatments represents a promising hurdle approach in food preservation, for extending the shelf life of fresh products. ECs in combination with optimum PL treatment condition (4 J/cm2) improved the quality of tomato fruits in terms of reducing the growth of the endogenous flora, as well as of preserving the quality attributes (pH, total soluble solids, and color) over a 15-d storage at room temperature.\",\"PeriodicalId\":9695,\"journal\":{\"name\":\"Chemical engineering transactions\",\"volume\":\"25 1\",\"pages\":\"61-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical engineering transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3303/CET2187011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2187011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 4

摘要

可食用涂层(ECs)作为一种简单而有效的提高易腐食品(如新鲜或新鲜切割的水果和蔬菜)的可储存性的方法,近年来引起了越来越多的关注,它有助于通过减少呼吸速率和水分损失来保持其质量。据报道,加入抗微生物剂,如精油,通过控制食品表面抗微生物化合物的释放,也增加了涂层的抗微生物性能,有助于进一步减少微生物在长时间储存中的生长。脉冲光(PL)处理作为食品和食品接触面表面去污的非热处理方法已被广泛研究,因为它们能够通过短时间暴露导致微生物数量的显著减少。因此,ECs和PL处理的结合代表了一种很有前途的食品保存障碍方法,可以延长新鲜产品的保质期。ECs与最佳PL处理条件(4 J/cm2)相结合,在室温下保存15 d,可以减少内源菌群的生长,并保持品质属性(pH、总可溶性固形物和颜色),从而提高番茄果实的品质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combination of Edible Coatings Containing Oregano Essential Oil Nanoemulsion and Pulsed Light Treatments for Improving the Shelf Life of Tomatoes
Edible coatings (ECs) have attracted increasing attention in the last years as a simple yet effective approach to increase the storability of perishable foods, such as fresh or fresh-cut fruits and vegetables, contributing to maintaining their quality by reducing respiration rate and water loss. The incorporation of antimicrobial agents, such as essential oils, was reported to add also antimicrobial properties to the coatings, through the controlled release of the antimicrobial compounds on the food surface, contributing to further reduce microbial growth over extended periods of storage. Pulsed light (PL) treatments have been widely investigated as non-thermal processes for superficial decontamination of food and food-contact surfaces, because of their ability to cause, through a short exposition, a significant reduction in the microbial population. Therefore, the combination of ECs and PL treatments represents a promising hurdle approach in food preservation, for extending the shelf life of fresh products. ECs in combination with optimum PL treatment condition (4 J/cm2) improved the quality of tomato fruits in terms of reducing the growth of the endogenous flora, as well as of preserving the quality attributes (pH, total soluble solids, and color) over a 15-d storage at room temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical engineering transactions
Chemical engineering transactions Chemical Engineering-Chemical Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊介绍: Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering
期刊最新文献
Incorporation of a Filter Media by Cellulose Fibers in Biosafety from Sugarcane Bagasse by Alkaline Hydrolysis Air Deterioration Gases in the Social Confinement Period by COVID-19 in Bogotá, Quito, Lima, Santiago de Chile and Buenos Aires Modelling of Methanol Synthesis The Potential of Liquefied Oxygen Storage for Flexible Oxygen-Pressure Swing Adsorption Unit Optimal Operational Profiles in an Electrodialysis Unit for Ion Recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1