{"title":"云计算中的资源优化:大数据分析架构中推荐算法的比较研究","authors":"Aristide Ndayikengurukiye, Abderrahmane Ez-Zahout, Akou Aboubakr, Youssef Charkaoui, Omary Fouzia","doi":"10.14313/jamris/4-2021/28","DOIUrl":null,"url":null,"abstract":"Recommender systems (RS) have emerged as a means of providing relevant content to users, whether in social networking, health, education, or elections. Furthermore, with the rapid development of cloud computing, Big Data, and the Internet of Things (IoT), the component of all this is that elections are controlled by open and accountable, neutral, and autonomous election management bodies. The use of technology in voting procedures can make them faster, more efficient, and less susceptible to security breaches. Technology can ensure the security of every vote, better and faster automatic counting and tallying, and much greater accuracy. The election data were combined by different websites and applications. In addition, it was interpreted using many recommendation algorithms such as Machine Learning Algorithms, Vector Representation Algorithms, Latent Factor Model Algorithms, and Neighbourhood Methods and shared with the election management bodies to provide appropriate recommendations. In this paper, we conduct a comparative study of the algorithms applied in the recommendations of Big data architectures. The results show us that the K-NN model works best with an accuracy of 96%. In addition, we provided the best recommendation system is the hybrid recommendation combined by content-based filtering and collaborative filtering uses similarities between users and items.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource Optimisation in Cloud Computing: Comparative Study of Algorithms Applied to Recommendations in a Big Data Analysis Architecture\",\"authors\":\"Aristide Ndayikengurukiye, Abderrahmane Ez-Zahout, Akou Aboubakr, Youssef Charkaoui, Omary Fouzia\",\"doi\":\"10.14313/jamris/4-2021/28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems (RS) have emerged as a means of providing relevant content to users, whether in social networking, health, education, or elections. Furthermore, with the rapid development of cloud computing, Big Data, and the Internet of Things (IoT), the component of all this is that elections are controlled by open and accountable, neutral, and autonomous election management bodies. The use of technology in voting procedures can make them faster, more efficient, and less susceptible to security breaches. Technology can ensure the security of every vote, better and faster automatic counting and tallying, and much greater accuracy. The election data were combined by different websites and applications. In addition, it was interpreted using many recommendation algorithms such as Machine Learning Algorithms, Vector Representation Algorithms, Latent Factor Model Algorithms, and Neighbourhood Methods and shared with the election management bodies to provide appropriate recommendations. In this paper, we conduct a comparative study of the algorithms applied in the recommendations of Big data architectures. The results show us that the K-NN model works best with an accuracy of 96%. In addition, we provided the best recommendation system is the hybrid recommendation combined by content-based filtering and collaborative filtering uses similarities between users and items.\",\"PeriodicalId\":37910,\"journal\":{\"name\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14313/jamris/4-2021/28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris/4-2021/28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Resource Optimisation in Cloud Computing: Comparative Study of Algorithms Applied to Recommendations in a Big Data Analysis Architecture
Recommender systems (RS) have emerged as a means of providing relevant content to users, whether in social networking, health, education, or elections. Furthermore, with the rapid development of cloud computing, Big Data, and the Internet of Things (IoT), the component of all this is that elections are controlled by open and accountable, neutral, and autonomous election management bodies. The use of technology in voting procedures can make them faster, more efficient, and less susceptible to security breaches. Technology can ensure the security of every vote, better and faster automatic counting and tallying, and much greater accuracy. The election data were combined by different websites and applications. In addition, it was interpreted using many recommendation algorithms such as Machine Learning Algorithms, Vector Representation Algorithms, Latent Factor Model Algorithms, and Neighbourhood Methods and shared with the election management bodies to provide appropriate recommendations. In this paper, we conduct a comparative study of the algorithms applied in the recommendations of Big data architectures. The results show us that the K-NN model works best with an accuracy of 96%. In addition, we provided the best recommendation system is the hybrid recommendation combined by content-based filtering and collaborative filtering uses similarities between users and items.
期刊介绍:
Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing