易感-感染-易感(SIS)模型在变种群大小的病毒突变

IF 3.1 3区 环境科学与生态学 Q2 ECOLOGY Ecological Complexity Pub Date : 2022-06-01 DOI:10.1016/j.ecocom.2022.101004
Ayse Peker Dobie
{"title":"易感-感染-易感(SIS)模型在变种群大小的病毒突变","authors":"Ayse Peker Dobie","doi":"10.1016/j.ecocom.2022.101004","DOIUrl":null,"url":null,"abstract":"<div><p>The complex dynamics of a contagious disease in which populations experience horizontal and vertical transmissions, size variation, and virus mutations are of considerable practical and theoretical interest. We model such a system by dividing a population into three distinct groups: susceptibles (<span><math><mi>S</mi></math></span>), <span><math><mi>C</mi></math></span>-infected (<span><math><mi>C</mi></math></span>) and <span><math><mi>F</mi></math></span>-infected (<span><math><mi>F</mi></math></span>), based on the Susceptible-Infectious-Susceptible (<span><math><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></math></span>) model. Once the individuals in the <span><math><mi>C</mi></math></span>-infected group recover from the disease, they gain no permanent immunity. The virus can mutate in the group <span><math><mi>C</mi></math></span>. When it does, the individuals become members of the <span><math><mi>F</mi></math></span>-infected group. The mutated virus causes a lethal and incurable disease with a high mortality rate. We discuss the model for two cases. For the first case, all the newborns from infected mothers develop the disease shortly after their birth. For the second case, there exist equal transmission rates and the <span><math><mi>C</mi></math></span>-infected population is lifelong infectious. Our analysis shows that both systems have positive solutions, and the first model possesses four equilibrium points, the trivial one (extinction of the species), <span><math><mi>C</mi></math></span>-free equilibrium (extinction of the ancestor virus) and two endemic equilibria of different properties. We identify the net population growth rates of the susceptible and <span><math><mi>C</mi></math></span>-infected groups for the existence of the equilibria of the first model. We define the conditions of parameters for which species extinction and endemic equilibria are locally asymptotically stable. We observe that bifurcation occurs at the <span><math><mi>C</mi></math></span>-free equilibrium. For the second model, we find that there is only one endemic equilibrium and it is always locally asymptotically stable. We also determine the region for the net population growth rates of the susceptible and <span><math><mi>F</mi></math></span>-infected groups for the existence of the endemic equilibrium.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"50 ","pages":"Article 101004"},"PeriodicalIF":3.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Susceptible-infectious-susceptible (SIS) model with virus mutation in a variable population size\",\"authors\":\"Ayse Peker Dobie\",\"doi\":\"10.1016/j.ecocom.2022.101004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The complex dynamics of a contagious disease in which populations experience horizontal and vertical transmissions, size variation, and virus mutations are of considerable practical and theoretical interest. We model such a system by dividing a population into three distinct groups: susceptibles (<span><math><mi>S</mi></math></span>), <span><math><mi>C</mi></math></span>-infected (<span><math><mi>C</mi></math></span>) and <span><math><mi>F</mi></math></span>-infected (<span><math><mi>F</mi></math></span>), based on the Susceptible-Infectious-Susceptible (<span><math><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></math></span>) model. Once the individuals in the <span><math><mi>C</mi></math></span>-infected group recover from the disease, they gain no permanent immunity. The virus can mutate in the group <span><math><mi>C</mi></math></span>. When it does, the individuals become members of the <span><math><mi>F</mi></math></span>-infected group. The mutated virus causes a lethal and incurable disease with a high mortality rate. We discuss the model for two cases. For the first case, all the newborns from infected mothers develop the disease shortly after their birth. For the second case, there exist equal transmission rates and the <span><math><mi>C</mi></math></span>-infected population is lifelong infectious. Our analysis shows that both systems have positive solutions, and the first model possesses four equilibrium points, the trivial one (extinction of the species), <span><math><mi>C</mi></math></span>-free equilibrium (extinction of the ancestor virus) and two endemic equilibria of different properties. We identify the net population growth rates of the susceptible and <span><math><mi>C</mi></math></span>-infected groups for the existence of the equilibria of the first model. We define the conditions of parameters for which species extinction and endemic equilibria are locally asymptotically stable. We observe that bifurcation occurs at the <span><math><mi>C</mi></math></span>-free equilibrium. For the second model, we find that there is only one endemic equilibrium and it is always locally asymptotically stable. We also determine the region for the net population growth rates of the susceptible and <span><math><mi>F</mi></math></span>-infected groups for the existence of the endemic equilibrium.</p></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":\"50 \",\"pages\":\"Article 101004\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X22000265\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X22000265","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

传染性疾病的复杂动力学,其中人群经历水平和垂直传播,大小变化和病毒突变,具有相当大的实践和理论意义。我们基于易感-感染-易感(SIS)模型,通过将人群分为三个不同的群体:易感人群(S)、C型感染人群(C)和F型感染人群(F)来建立这样一个系统的模型。一旦c型感染组的个体从疾病中恢复过来,他们就不会获得永久的免疫力。病毒可以在c组中发生变异,当它发生变异时,这些个体就成为f感染组的成员。这种变异的病毒会导致一种致命的、无法治愈的疾病,死亡率很高。我们讨论两种情况下的模型。对于第一个病例,所有受感染母亲所生的新生儿在出生后不久就会患上该病。对于第二种情况,存在相同的传播率,c感染人群具有终身传染性。我们的分析表明,这两个系统都有正解,并且第一个模型具有四个平衡点,一个平凡平衡点(物种灭绝),一个无c平衡点(祖先病毒灭绝)和两个不同性质的地方性平衡点。我们确定了存在第一个模型平衡点的易感和c感染群体的净人口增长率。我们定义了物种灭绝和地方性平衡是局部渐近稳定的参数条件。我们观察到分岔发生在无碳平衡态。对于第二个模型,我们发现只有一个局部平衡点,它总是局部渐近稳定的。我们还确定了存在地方性平衡的易感和f感染群体的净人口增长率区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Susceptible-infectious-susceptible (SIS) model with virus mutation in a variable population size

The complex dynamics of a contagious disease in which populations experience horizontal and vertical transmissions, size variation, and virus mutations are of considerable practical and theoretical interest. We model such a system by dividing a population into three distinct groups: susceptibles (S), C-infected (C) and F-infected (F), based on the Susceptible-Infectious-Susceptible (SIS) model. Once the individuals in the C-infected group recover from the disease, they gain no permanent immunity. The virus can mutate in the group C. When it does, the individuals become members of the F-infected group. The mutated virus causes a lethal and incurable disease with a high mortality rate. We discuss the model for two cases. For the first case, all the newborns from infected mothers develop the disease shortly after their birth. For the second case, there exist equal transmission rates and the C-infected population is lifelong infectious. Our analysis shows that both systems have positive solutions, and the first model possesses four equilibrium points, the trivial one (extinction of the species), C-free equilibrium (extinction of the ancestor virus) and two endemic equilibria of different properties. We identify the net population growth rates of the susceptible and C-infected groups for the existence of the equilibria of the first model. We define the conditions of parameters for which species extinction and endemic equilibria are locally asymptotically stable. We observe that bifurcation occurs at the C-free equilibrium. For the second model, we find that there is only one endemic equilibrium and it is always locally asymptotically stable. We also determine the region for the net population growth rates of the susceptible and F-infected groups for the existence of the endemic equilibrium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Complexity
Ecological Complexity 环境科学-生态学
CiteScore
7.10
自引率
0.00%
发文量
24
审稿时长
3 months
期刊介绍: Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales. Ecological Complexity will publish research into the following areas: • All aspects of biocomplexity in the environment and theoretical ecology • Ecosystems and biospheres as complex adaptive systems • Self-organization of spatially extended ecosystems • Emergent properties and structures of complex ecosystems • Ecological pattern formation in space and time • The role of biophysical constraints and evolutionary attractors on species assemblages • Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory • Ecological topology and networks • Studies towards an ecology of complex systems • Complex systems approaches for the study of dynamic human-environment interactions • Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change • New tools and methods for studying ecological complexity
期刊最新文献
Enhancing maximum sustainable yield in a patchy prey–predator environment A scale-invariant method for quantifying the regularity of environmental spatial patterns Assessing the ecological complexity and uncertainty of predicting forest ecosystem services under climate change Transitive and intransitive structures in competition-based ecological communities The central importance of the honeybee (Apis mellifera L.) within plant-bee interaction networks decreases along a Neotropical elevational gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1